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Executive Summary 
The ability of the electric power system to adjust its operating point by modulating its inputs and outputs 
is known as Power System Flexibility. A power system with a low flexibility characteristic is deemed 
insecure, and is unable to cope with very fast or unforeseen disruptions. In classical power systems, 
navigating the system safely through unpredictable events was a challenge limited to accommodating 
load variations, and rare equipment failures, and thus, conventional generation units were sufficient to 
provide the classical power system with the flexibility needed. In contrast, operators today are faced with 
larger uncertainty, caused by renewable energy sources (RES). The existing flexibility in classical power 
systems falls seriously short of accommodating the variability of RES. In fact, the lack of power system 
flexibility remains the main obstacle in the face of higher penetration of RES in the power grid. To achieve 
high penetration of RES in the power system, flexibility is needed on versatile levels (transmission & 
distribution grids), by different stakeholders (DSOs, TSOs, energy providers, balance responsible parties 
and aggregators), serving various needs (such as balancing, mitigation of congestions, voltage 
regulations). This report adopts this approach, utilizing all sources of flexibility to operate the system 
securely, and optimally, but focusing on the distribution level. 

Chapter 2 introduces the various distributed energy resources (DER), which have the potential to provide 
different types of flexibility services, e.g. by shifting loads, curtailment or buffering of energy. These 
privately owned assets, such as electric vehicles, heat pumps, decentralised storage or smart appliances, 
come with constrains: their availability is limited, they have restricted control options and the flexibility 
service may not compromise the comfort of the user to an unacceptable extend. Furthermore, the 
interrelation with incentives, tariff schemes and demand response programs has further influence on the 
available amount of flexibility – which is illustrated in this chapter by examples from different studies and 
demo projects.  

Chapter 3 takes a closer look at flexibility at the distribution system level, and particularly, flexibility from 
the demand side incentivized by dynamic electricity prices. Characteristics of loads and constrains  
concerning flexibility provision are highlighted. The parameters to quantify load flexibility are explained. 
Consequently, loads are classified to 5 classes based on their aptitude/potential to provide flexibility. This 
general framework is materialized in an optimisation formulation and integrated in a set of procedures 
and algorithms for the acquisition of flexibility from loads at the distribution system level. The response 
of loads (hence their flexibility) to a dynamic price signal and resulting grid operations risks,  are explored 
in this numerical study. 

The numerical results obtained in Chapter 3 pertain to a physical and a mathematical optimisation model 
run on level of the individual households, respectively on device level. If availability of flexibility shall be 
quantified from perspective of a central agent, as a DSO or aggregator for instance, evaluation time is 
critical during real-life applications. A data-driven model is trained in Chapter 3, to replicate the results of 
the optimisation model in shorter time, and with less computational effort than mathematical 
optimisation. The deep-learning based model encodes the data from a human-readable format to a 
hidden space, where it can be solved, and then decodes the data back to a human-readable format. The 
model demonstrates good performance at predicting the time-shift in discrete load events. However, the 
model is less accurate at predicting the magnitude of load in response to a dynamic price profile. 
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Finally, the model in Chapter 4 assumes that the operator sets a price profile, and the operator observes 
the system's response. The operator cannot set directly the desired amount of flexibility. Chapter 4 solves 
a stochastic optimisation model where the flexibility requirement (limiting the peak load of a micro grid) 
is set explicitly in a stochastic optimisation problem for a set of generated random forecast scenarios 
(incorporating load forecasts as well as renewable generation forecasts and their uncertainties). The 
amount and the time of provided flexibility are recorded for each forecast scenario, separately. These 
results are analysed statistically to evaluate the certainty of securing the required amount of flexibility. 
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1 Introduction 
This report constitutes the deliverable of Task 3.4 – Quantification of availability and certainty for various 
flexibility resources – within WP3 of FlexiGrid. As discussed in the deliverable of Task 3.3 – Process design 
for flexibility procurement and dispatch, the available amount of flexibility at a given time strongly 
depends on locational and temporal constraints. From the demand side, these include the behaviour of 
the end-users, occupancy, automated set points of the appliances and willingness of participating in the 
flexibility services. On the other hand, grid-oriented flexibility services require flexibility at a particular 
network area for a certain duration in a day. The distribution system operator (DSO) can request these 
services either with implicit or explicit flexibility implementation [1]. In any case, these services strongly 
depend on the availability of the flexibility resources which are planned to offer the service. Depending 
on the nature of each flexibility source, e.g. heat pumps vs. electric vehicles, the availability of a flexibility 
source might vary e.g. with their interdependencies with geographical conditions, timing, and social 
behaviours. Significant discrepancies might occur without a thorough assessment on the availability and 
certainty of each flexibility sources. These may lead to conflicts of interest among the actors involved in 
flexibility procurement, valuation and exploitation.  

1.1 The objective and scope 
This task was designed to formulate a methodology to quantify available flexibility from the demand side. 
An inventory of flexible devices, e.g. heat pumps, electric vehicles, or stationary storage technologies, and 
demand response programs will be incorporated in order to assess the availability of flexibility and 
associated limiting factors of various flexibility resources.  

In this report, the characteristics of each flexibility source and their dependencies on various aspects 
(geographical conditions, timing, behavioural factors etc.) will be specified. A deterministic approach in 
modelling flexibility from distributed energy resources will be presented, based on a study using dynamic 
electricity prices to incentivise flexibility. Moreover, the results of a developed data-driven model for 
various flexibility resources (heat pumps, electric vehicles, different household appliances etc.), applied 
to the same example, will be presented and assessed.  

Finally, the certainty of flexibility provision under the uncertainty of load forecasts, as well as renewable 
generation forecasts, will be determined. This use case is based on the behaviour of micro grids, consisting 
of loads, battery storage systems and photovoltaic generation capacities, delivering a capacity limitation 
flexibility service to the grid operator. The certainty of flex provision, its capacity and schedule is 
determined by means of a stochastic programming model.  

1.2 Deliverable structure 
The following Chapter 2 presents an overview about the available flexibility sources with their potential 
and limiting factors in offering flexibility services. Chapter 3 presents a set of deterministic models for 
various types of flexibility, e.g. time-shifting, buffering, curtailing. This includes a market-based demand 
response mechanism to assess the impact of demand-side flexibility in relieving congestion by adjusting 
electricity prices. In Chapter 4, different data-driven models, which might be used to capture flexibility 
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behaviours of the demand-side, have been discussed. Chapter 5 provides an insight on potential 
uncertainty of exploiting demand-side flexibility, in form of a capacity limitation flexibility service, via a 
stochastic assessment process. 
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2 Flexibility resource inventory 
The aim of this chapter is to list the main flexibility options in order to ensure a stable and secure delivery 
of power to all end-users and to enable the utilisation of distributed energy resources to provide flexibility 
to DSOs mainly. An analysis of opportunities and limitations of every option will be made. 

Traditionally, flexibility needs arise from changing consumption pattern, forecast errors or power plant 
outages. But the increase of variable renewable generation sources (predominantly wind and solar) is 
changing the way the balance of the power system needs to be assured. Compared to conventional 
electricity sources, wind and solar-based renewables do not provide a stable, arbitrarily controllable 
power production, rather they are intermittent and stochastic. Since the power output depends on the 
meteorological conditions, it cannot be modulated by the producers, at least not increased and not easily 
decreased without loss or storage capacity. As a result, the produced electrical power is fed into the grid 
whenever available and can only be forecasted with a certain accuracy [2]. This stochastic nature of 
variable Renewable Energy (vRE) leads to challenges regarding balancing the system, which in turn, leads 
to the increasing needs for flexibility and other methods to resolve these rising concerns. 

The challenge has further, different aspects and is particularly acute at the distribution level. The 
previously mentioned development of decentralised energy resources, as well as the electrification of 
transport and heating, put increased pressure on the medium and low voltage networks. Besides the 
described increasing balancing issues (mainly on higher voltage levels), decentralised fluctuating 
generation and massively changing consumption patterns (due to the penetration of heat pumps and EVs 
in particular), might result in voltage band violations and local congestions, e.g. transformer overloads. 
DSOs need to change from a rather passive role in grid operation, characterised by a security driven 
planning approach, to a more active grid management paradigm, observing the operational state of the 
grid and controlling actively the operational parameter. In this framework, flexibility from the demand 
side (DSM) both from power to heat (heat pumps, electric boiler etc.), electric vehicles, battery storage 
and other devices, will be increasingly necessary. 

With heating representing almost one third (27%) and transport one fifth (19.4 %) of Europe’s final energy 
consumption, the procurement of flexibility from heat pumps and electric vehicles will be critical at the 
distribution level. Stationary battery storage also holds great potential to help balance the grid at the low 
and medium voltage and actively remove congestions and voltage band violations. Stationary battery 
storage and electric vehicles, could both (theoretically) provide buffer storage flexibility, but their 
availability as well as the economic incentive to provide power flexibility, will be very different. Other 
technologies, such as air conditioning, refrigerators, white ware etc., even with low flexibility potential for 
the single appliance, can be managed smartly to increase flexibility options in the grid, and will be relevant 
considering the massive amount of these appliances operating in the LV grids. 

2.1 Power-to-heat 
There are different ways to convert electricity into heat, respectively running thermal processes by means 
of electricity, which could in return be utilised to provide flexibility. The following chapter will focus on 
small scale thermal systems in the low voltage grids. Power-to-heat options could be centralised and 
decentralised, as depicted in Figure 2-1 : In a centralised system, electricity is mainly converted into heat 
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and injected to a district heating system, using industrial-scale heat pumps or electric boilers. In the 
second case, the decentral option, power-to-heat is used right at, or very close to the location of heat 
demand, by means of heat pumps, electric boilers or other types of electric heating systems.  

 

Figure 2-1: Interconnections of power-to-heat options with electricity and district heating networks [2]. 

Buildings or domestic hot water storage tanks have relatively high thermal inertia, which is very suitable 
to “store” energy in form of heat, since the electric load can relatively easily be shifted towards a more 
suitable point in time.  

In the sub-chapters below, we will give further insights in the use of heat pumps, electric boilers/heaters 
and HVAC systems (heating, ventilation, air-conditioning and cooling), to convert power to thermal energy 
and their usability as flexibility asset. 

2.1.1 Heat pumps 
a) Characteristics of load curves:  

There are three main types of the heat pumps, namely air source heat pump (ASHP), ground source heat 
pump (GSHP), and water source heat pump (WSHP). The absorbed heat is transferred to the heat sink, for 
example radiators, floor heating, or domestic hot water storage.  

The load curve of heat pumps show a certain daily characteristic and differs according to seasons 
(respectively outdoor temperatures). Load patterns are at roughly the same shape, independent of the 
technologies, since it depends on the heat demand which is directly influenced by the meteorological 
conditions. Furthermore, the domestic hot water demand influences the shape. Generally, according to 
the seasonal fluctuation of the heating demand, the consumption of a heat pump is obviously much higher 
during the winter season due to low temperatures. 
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Figure 2-2: Hourly demand factors at different temperature ranges. Exemplary functions for single-family houses (SFH), multi-
family houses (MFH), and commercial buildings (COM)[3]. 

Heat demand and resulting pump load curves also depend on the type of household or building 
considered. The most relevant types to be considered here are single-family houses, multi-family houses 
and commercial buildings. As illustrated by Figure 2-2, heat demand is higher in the morning and has a 
second peak towards the evening in single-family houses and multi-family houses. Commercial buildings 
show a similar peak during the morning, at slightly later times, but flatten towards noon and drop after 
the business hours. The graph shows the hourly demand factors, which indicate how the daily heat 
demand distributes over the day (the sum of demand factors of a full day sum up to 100%). Hence, it 
shows how the “profile” varies over the season, but does not give insight how the total heat demand 
increases with lower temperatures. 

Besides the heating demand, depending on outdoor temperature, building type and energy efficiency of 
the building, heat pumps differ in the energy efficiency which furthermore influences the load profile.  
The different types of heat pumps can have large differences in their efficiency, which depends on the 
temperature level of the heat source (as well as the heat sink). Hence, air source heat pumps are less 
efficient at colder temperature compared to ground sourced heat pumps or water based systems. 
Similarly, heat pump systems using floor heating operate more efficiently than those using radiators as 
heat sink, since the latter require higher temperatures.   

b) Potential flexibility provision type  

Flexibility from heating (and cooling) can be used in several ways in a power system. Moving loads from 
electricity net load peaks to net valleys can smooth variations. When the heating devices have suitable 
controllability, they can also be valuable sources of reserves that mitigate forecast errors and faults. 
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Figure 2-3: Different DSM strategies implemented for heat pumps[4]. 

[4] Arteconi et.al. discuss the options to implement DSM strategies by means of heat pumps, and 
identified three technologies (see Figure 2-3) providing different flexibility:  

a) Energy efficiency – a variable capacity heat pump, as opposed to an “ON/OFF”-controlled heat 
pump, would enable to generally decrease the load profile or allow peak shaving. 

b) A heat pump system in combination with thermal storage enables load shifting (time shifting). 
c) Demand response (DR), e.g. dynamic pricing, could automatically influence the internal 

temperature setpoints and provide peak shaving or valley filling. 

The value of such flexibility e.g. for balancing purposes might depend on factors such as geography. The 
appearance of strong wind generation in winter correlates with the heating period in central and northern 
European countries, which makes heat pumps and wind power a great match in this geographical area. 
Whether a flexible dispatch in combination with real-time pricing is economically profitable for the 
consumer, however,  depends on the electricity pricing regime.  

According to a study published by Tennet in 20201 for the Netherlands, smart use of flexible heat pumps 
could provide between 0.5 and 1 GW of power flexibility and relieve the network during hours of high 
solar and wind generation. This would lead to a significant reduction in curtailment and reduce the 
demand during peak hours. The flexibility from heat pumps would also contribute to CO2 reduction by 
reducing the need for gas-fired plants, which would have increased consumer’s energy bills.  

Another study led by KU Leuven for Belgium show that 1 million electric heating systems have the 
potential to offset up to 1,4 TWh of curtailment (1 MWh of curtailment reduction per electric device)2 [5]. 

The Cost reduction is significant, as highlighted in the picture below, with up to 35 million € saved for 1 
million systems installed, in the case of 33% non-flexible nuclear power plant fleet capacity as today, at 

 
 

1 https://www.pv-magazine.com/2021/01/29/flexible-heat-pumps-ideal-for-power-grids-congested-by-solar-and-wind/ 
2 In the case of a plant fleet of 1/3 nuclear power, as today, with low flexibility and 3-times the current renewable capacity  
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total operation costs of 457 million € - for the scenario of a triple of current renewable capacity installed 
(R3). 

 

Figure 2-4: Total cost reductions of operational costs (flexible heat pumps) [5]. 

c) Restrictions 

A communication interface on modern heat pumps, eventually in combination with a thermal storage 
capacity to avoid comfort restrictions during off-times, would enable the (constrained) flexibility usage, 
without harming the comfort of the building occupants. Some utilities already offer specific heat pump 
tariffs, which allow the utility to switch off the heat pump during peak times, e.g. for 1 hour per day (for 
instance in Germany). Several producers of heat pumps include a communication interface, which allows 
to remotely disconnect the device for a certain idle period, typically limited to 1 or 2 hours. Some 
producers also market their products a “smart-grid ready” offering further remote-control option, such 
as triggering a start remotely or the reduction of the current load.  

The electrification of heat is, however, highly dependent on an energy-efficient building stock. Heat 
pumps are most efficient when they supply heat at low temperatures. Their efficiency decreases if applied  
in buildings that are not well insulated. This has been identified as one of the key risks for the deployment 
of heat pumps and flexible services to the grid. It highlights how important it is to couple power, heat and 
building sectors in order to reach a zero-carbon economy by 2050. 

2.1.2 Electric heater/boiler  
Electric heater or electric boiler can also provide some flexibility, even if they are less energy efficient 
compared to heat pumps. On the other hand, if deployed in a large scale, their power demand can have 
large impact on power systems daily and seasonal (peak) load variations. For example, in France, the 
majority of residential heating is based on electric heating and causes considerable temperature 
sensitivity in the power demand (2300 MW/°C)3. It is a major driver for extreme peak loads and risk for 
the security of supply.  

However, a controllable electric heating (as well as cooling) can draw on the potential flexibility of heating 
(thermal inertia) to facilitate renewables integration and manage peak loads. The use of Information and 
Communications Technologies (ICT) in electric heaters could therefore provide the option to shift demand 
loads according to power system conditions, while also meeting the building occupant’s comfort 
requirements. Direct transformation of electric energy to heat would include electric heating systems 

 
 

3 RTE, Bilan electrique 2019, RTE, Direction innovation et donnees, Janvier 2020, Paris. 
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(fans, radiators, electric floor heating, infrared heating), electric boilers to provide domestic hot water 
demand (with or without buffer storage) and electric heaters included in heat pumps. These additional 
heaters are normally used once the outdoor temperature reaches very cold values, or to provide the 
higher temperatures for the domestic hot water demand (see Figure 2-5 below). The potential for time 
shifting flexibility services for electric heating systems are then rather similar to heat pumps.  

 

Figure 2-5: Weekly load profile of the heat pumps [6]. 

The flexibility provision by electric boilers, providing domestic hot water demand, requires a hot water 
storage – flow type heaters are unsuitable. Their potential to deliver flexibility services for balancing in 
the Belgian power system has been assessed in [5] using two scenarios, a) the current plant fleet 
containing 1/3 of non-flexible nuclear plants and b) switch those towards gas-fired units: As depicted in 
Figure 2-1, the high curtailment needs, occurring in scenario a) under the assumption for a tripled 
renewable capacity (R3) can be substantially reduced by deploying flexible water heaters (from 10% to 
6% for 1 million devices on the grid). 

 

Figure 2-6: effect of reducing curtailment by flexibility provision from flexible water heaters 
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2.1.3 HVAC – Heating, Ventilation, Airconditioning and Cooling 
In Europe, the general cooling demand is considerably smaller than heating, but it is growing fast with 
increasing building cooling demand and due to the strong urban development in warmer climates and 
new uses in services and industries, such as cooling of large data centres. HVAC systems, as used in 
residential and commercial buildings, describe normally air handling units, used to (eventually) heat, cool 
and de/humidify an air stream supplying the building. Ventilation, conditioning and cooling is mainly 
provided on systems based on electricity. For HVAC to provide energy flexibility to a building requires its 
systems must be designed, controlled and operated appropriately for the intended purpose. If managed 
flexible, the HVAC systems will contribute to the building's ability to manage its energy demand and still 
provide flexibility to the power system.  But as different as HVAC systems can be, their use (mainly in 
commercial buildings) is also versatile, the climate conditions add to this uncertainty and it is difficult to 
draw general conclusions on the characteristics of their load curves and flexibility potential.  

2.2 Electric vehicles (smart charging / vehicle-to-grid) 
At a continental or country level, the impact of EV charging on the power demand at the expected growth 
rates of electromobility, will be significant. In its latest global electric vehicles Outlook, IEA forecasts the 
share of EVs on the total electricity consumption in 2030 growing to as high as 4% in Europe. 

But the impact of EV charging on the power grid will be especially significant in the distribution networks, 
specifically at the LV network level as EV demand sharply increases the household peak demand in 
residential areas. According to a study led by McKinsey [8], the increase in peak demand could reach 30% 
in specific areas, such as suburban districts, once a 25% penetration share of EV of the total car fleet is 
reached (see Figure 2-7). 

 

 

 

 

 

 

 

Figure 2-7: The increase in peak demand due to EV penetration of 25% [7]. 

Current network tariff systems for household connections are not designed to regulate or hamper such 
increase in peak power demand. There is currently almost no incentive for EV drivers to charge during off 
peak periods. However, from a pure balancing perspective, off peak times would be suitable to charge 
electric vehicles, since there is generally sufficient power available and often excess of variable renewable 
generation.  
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a) Characteristics of load curves:  

Electric Vehicles (EVs) typical charging pattern is daily, showing differences by weekdays and charging 
locations. People use their vehicles on a daily basis, and charge it either at home, at work or at public 
charging points. According to users’ needs and habits, charging patterns can be different. These load 
patterns, for different localisations (at home, at work, public charging points or other) can be seen in 
Figure 2-8. The chart shows, that the load pattern for EV charging at home, has its minimum around 6:00 
and rises continuously over the day until it reaches its peak between 18:00 and 22:00. After the evening 
peak, which is the most problematic for the distribution grid management as well as the system wide 
balancing, the demand drops until the minimum is reached again. The demand profile for charging at work 
is  different, peaking between 9:00 and 12:00 and dropping again continuously until the minimum is 
reached between 24:00 and 6:00. For public charging, the curve is similar to the work profile during the 
early morning, but flattens after 9:00 and does not reach such a high peak, while it drops rather slowly 
towards the evenings.  

 
Figure 2-8: charging profiles by location [8]. 

A recent report from the US (figure below) published the modelled, aggregated load curves of 100,000 
EVs (generated by a model from NREL, called EVI-Pro) for a typical work day and weekend. Furthermore, 
two scenarios have been studied: an “uncontrolled charging”, where EVs charge immediately, at full 
power, when plugged in and stop only when the car is fully charged, and a “maximally delayed charging” 
where EVs only charge during the last possible period that guarantees the EV to be fully charged before 
the foreseen departure time. The two graphs at the top of Figure 2-9 show that the uncontrolled charging 
on weekdays results in a peak demand of 150 MW between 18:00 and 22:00 at the evening, while during 
weekend the peak spreads out a bit further with 100 MW between 16:00 and 22:00. In case of a maximum 
delayed charging, the peaks for both days are shifted towards the mornings and got more concentrated: 
reaching 200 MW at weekdays around 7:00 and almost 150 MW on weekends between 7:00 and 9:00. 
Both resulting peaks (in the mornings if “uncontrolled” and during the evenings “max. delay”) are 
unfavourable, since they correspond to the peak times in the electricity grid in middle European and 
Northern countries. 
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Figure 2-9: Aggregate demand profiles for 100,000 EVs under weekday and weekend uncontrolled and maximum delay charging 
conditions [9]. 

b) Potential flexibility provision type - time shifting (V1G) & buffering (V2G) 

Smart charging means adapting the charging cycle of EVs to both, the conditions of the power system and 
the needs of vehicle users. Such mechanisms range from simply switching on and off the charging, to 
unidirectional control of vehicles charging (V1G), that allows for increasing or decreasing the rate of 
charging, to the technically challenging bidirectional vehicle-to-grid (V2G), which allows the EV to provide 
services to the grid in the discharge mode.  

 

Figure 2-10: Effect of smart charging adapting to a renewable production curve [10]. 
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In a report published by IRENA (International Renewable Energy agency), the (system-wide) impacts of 
smart charging on the integration of renewables have been presented. The graphics above (Figure 2-10) 
show on the right hand side the EV charging load (purple) vs. the production curve of solar PV (top) and 
below against a wind power dominated power supply. The authors argued, that the correlations with the 
wind power supply curves are much higher than for the solar PV case, which underlines the need for smart 
charging in a solar-dominated energy mix [10].  

 

Figure 2-11: Average vehicle charging and residual load in 2030 with charging options at home, at work and in public [11]. 

Demand response (DR) schemes could largely influence the charging schedules of EVs. Gnann et.al. 
discussed the availability of EVs, meaning whenever they are connected to the grid, and would be 
available to provide flexibility, and found that, as soon as people have the ability to charge at work, EV 
availability is largely increased. This give the opportunity to orient the charging schedule on the residual 
load in the grid (which is the remaining load after the feed-in of decentralised renewable energy 
resources). Figure 2-11 shows the demand profile for EVs (commercial and privately used) during summer 
and winter season (according to their scenarios). Aligning the charging behaviour of EVs by demand 
response programmes to the renewable dominated residual load, if charged at home, at work and in 
public, would shift the charging towards noon during summer (high PV feed-in). During winter, the PV 
feed-in is far less shaping the residual load, which results in charging peaks during night and in a limited 
amount at noon.  

Time-of-use tariffs are considered as one of the possible ways to limit electric vehicles impact on the grid. 
Some studies have estimated that these measures could limit the impact of EV charging on peak loads by 
50% (as indicated in Figure 2-12). Time-of-use rates could not only create an incentive to reduce EV 
charging at peak system demand, they could further be used to reduce the risk of local congestions and 
voltage band violations in LV grids. Their use could thereby dilute the need for upgrades to flexible 
generation, transmission and distribution assets. It could also increase the economic interest of Vehicles-
to-Grid (V2G). Indeed, EV can not only alleviate the problem caused by their combined charging at peak 
time via smart charging, but they can also actively provide energy to the grid at suitable times via V2G.  
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Figure 2-12: Load shape for a typical feeder with 150 houses at 8 MWh per year [7]. 

Vehicle-to-grid (V2G) 

Vehicle-to-grid refers to the possibility of electric vehicles to offer some flexibility service to the grid by 
reinjecting (for instance during peak times) electricity they have charged before (during off-peak periods). 
Technically, the owner’s vehicle becomes a self-contained resource that can manage the power flow 
(charge and discharge) according to the needs of the distribution network operators (DSO). Optimally, EVs 
would charge during the night or during the afternoon when there is excess of vRE and discharge during 
peak hours, especially in the morning and the evening – considering the supply balance only. Figure 2-13 
illustrates this principle. 

 
Figure 2-13: Demand scenario with and without V2G technology [12]. 

According to IEA, even accounting for all the different limitations, around 5% of total global EV battery 
capacity could be available for V2G at suitable times. Despite being a very small share of the total EV 
battery capacity by 2030, the total technically available potential for V2G deployment exceeds the 
additional generation capacity required to meet peak demand in almost all major EV markets, including 

Graphics show a feeder circuit load for an example with 150 households and 2 cars each, at an EV 
penetration rate of 25%  (unit: kW) 

Flat tariff Time-of-use tariff 
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European Union, and would be available to compensate lower renewable production when necessary (see 
Figure 2-14).  

 

Figure 2-14: Vehicle-to-grid potential and variable renewable capacity relative to total capacity generation requirements in the 
Sustainable Development Scenario, 2030 [13]. 

Smart charging and vehicle-to-grid can significantly reduce peak load, limit curtailment and decrease CO2 
emissions. According to a study published by IRENA [14] on a solar-dominated energy mix, especially in 
case of V2G deployment, average short-run marginal cost can be reduced up to 13% compared to business 
as usual (Figure 2-15). Such actions can help displace more expensive and often more carbon intense 
generation assets, as well as lowering electricity prices by easing the integration of zero marginal cost 
technologies. 

  

Figure 2-15: Short-term impact of EV charging [10]. 

Nevertheless, unlocking the full flexibility potential of electric vehicles through dynamic controlled 
charging (V1G) and vehicle-to-grid services (V2G) will require the adaptation of regulatory and market 
frameworks. Various challenges remain to optimize synergies with variable renewable generation. But 
electric vehicles smart charging, as well as V2G technologies, remain a promising way to balance 
renewables, limit grid reinforcements and manage congestion at the distribution level in a smart and 
digital way. 
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c) Restrictions  

Smart charging and V2G applications depend on the availability and willingness of electric vehicles users. 
Some basic concerns include range anxiety and compromising comfort and potential battery degradation. 
EV owners might also be confused regarding different concepts (smart charging and V2G). 

Regarding availability, this depends on the time the EVs remain plugged in at charging stations while not 
driving. Hence, Gnann et.al. modelled the share of plug-in EVs (for a Tuesday in this example) following 
three Scenario: S1 - private cars charge at home / commercial at work; S2 – additional to S1, private cars 
charge at work; S3 – additional to S2, EVs can be publicly charged. The resulting availability can be seen in 
Figure 2-16. 

 
Figure 2-16: average shares of connected EVs for private and commercial use 

To increase the acceptance of such new charging concepts, longer autonomy, fast charging as well as 
deployment of public charging infrastructures have to be progressed. In addition, intelligent exchange of 
information, standardised communication protocols through smart meters and other intelligent 
infrastructure will be needed. Aggregators acting as middlemen between EV users, utilities and network 
operators will also be an essential part of this nascent ecosystem. Developing the right market design, 
business models and economic incentives will be critical to empower citizens and allow them to fully 
benefit from new technologies. An exemplary contractual relationship scheme is depicted in Figure 2-17. 
In this framework, the development of national/European standardised procedures to share and access 
the data from individual consumers will increasingly be needed. 

 
Figure 2-17: Contractual relationship between actors involved in electric mobility [15]. 

Legend:  
1A: EV Driver – Charging Point Operator 
(directly);  
1B: EV Driver - Charging Point Operator 
(intermediated by Mobility Service Provider);  
2: Charging Point Operator – Electricity 
Supplier;  
3: Electricity supplier – Electricity distribution 
company;  
4 Electricity distribution company – Charging 
Point Operator (only for connection) 
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2.3 Photovoltaics and decentralised storage 
Electricity storage combined with solar PV brings several benefits to residential customers. The installation 
of a solar battery provides a mean to extend the use of solar energy beyond the times of solar generation 
(e.g. making PV electricity available during night times ). Increasing the share of self-consumption will be 
the main driver for small-scale energy storage in Europe, since the consumption of own PV generated 
energy is financially more appealing compared to grid feed-in (in many EU countries). While typical on-
site solar systems can achieve a physical self-consumption rate of around 20 to 35%, smart solar and 
storage prosumers can even reach a 60 to 90% ratio. The aggregation of prosumers’ loads and battery 
flexibility can provide services to the grid, however, the potential for flexibility will be intrinsically limited 
since storing and discharging electricity to the grid will (likely) be economically less interesting than self-
consumption. 

 

 

 

 

 

 

 

 
 

 Figure 2-18: cumulative storage capacity [16]. 

The small-scale residential energy storage capacity will be part of the generally expected growth of 
storage capacities worldwide, driven by the rising needs for flexibility, indicated in Figure 2-18. Flexible 
energy storage, from a grid perspective, is useful when there are periods with surplus energy production, 
or periods with high demand and low supply. One of the potential methods for storing electrical power at 
LV are the above mentioned flexible storage batteries. Depending on the chemical concept, their capacity 
and efficiency differ. Currently lithium-ion batteries have the largest storage capacities, of the established 
battery types, and have up to 90% efficiency. However, compared to large scale storage concepts on grid 
level, their capacity is limited. They can be implemented mainly in households to balance when there is 
high electricity demand, or in micro grids, due to their high cost. 

According to SolarPower Europe’s new European Market Outlook For Residential Battery Storage report 
[17], currently only 7% of installed solar panels are coupled with battery storage. Maximum battery energy 
storage system (BESS) capacity remains concentrated in Germany, with close to 500 MWh installed. 
Followed by Italy, the United Kingdom, Austria and Switzerland. Altogether, the five countries represent 
over 90% of the European market. The forecasted decrease in battery prices combined with the 
continuous rise in electricity prices should lead to a large integration of residential batteries in European 
power mix. 

  



  GA #864048 
 

D 3.4 Dissemination Level: Public Page 27 of 83 

a) Characteristics of load curves:  

Photovoltaic battery storage can be operated in different ways, affecting the resulting load curve of the 
PV system. Figure 2-19 indicates 4 potential modes of operation:  

1) The direct charging option, which might result in the steep rise of the PV feed-in once the storage 
is fully charged, being rather counterproductive.  

2) The delayed charging, lowering the peak production around noon but grid operators still would 
need to reserve the full grid capacity, since the reduction would not be effective once the storage 
is fully charged (no additional grid capacity liberated). 

3) Peak shaving, which would have the same effect that curtailment, if the max. active power is 
limited to a fixed certain share, which would liberate grid capacities. But opposed to a 
curtailment, where the capped power would result in a loss of energy yield, the storage could 
take up the capped energy production, to be used at a later stage.  

4) The forecast-based charging, smartly limiting the peak power and optimising the self-
consumption. 

 
Figure 2-19: different way of operation for decentralize PV connected battery storage systems [18] 

b) Potential flexibility provision type - buffering 

Battery energy storage systems can be used for multiple applications in the power system, such as storing 
excess renewable generated energy for later consumption, wholesale market arbitrage or providing 
ancillary services to the grid operators. Providing reserves for frequency control, i.e. supporting the 
stability of the grid frequency, is one of the applications that has the highest value for a battery storage 
system. In Europe, Germany is currently the most developed market, in terms of residential battery 
installations.  

1. Direct charging 2. Delayed charging 

3. Peak Shaving 4. Forecast based charging 

Peak production might even be injected at 
higher ramp rate, as compared to PV alone. 

Might increase the integration challenge 

Reduced peak production, 
 better grid integration 

Grid relieving and  
optimising self-consumption 

Grid relieving and  
frees capacities for further RES 

Battery fully charged 

6:00  12:00  18:00 6:00  12:00  18:00 

6:00  12:00  18:00 6:00  12:00  18:00 
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Figure 2-20: Battery energy storage markets (new installations 2019) – Europe’s Top 5 [17] 

In Germany, battery manufacturer Sonnen has been granted pre pre-qualification to enter Germany’s 
Primary Control Reserve (PCR) market by grid operator TenneT, for its battery energy storage units 
installed across the country. If every solar home in Germany, around 1.5 million, was equipped with a 
Sonnen-Batterie, the power capacity would add up to 4.5 GW, with an energy capacity of 15GWh. Such a 
virtual power plant (VPP), would be equivalent to four large thermal power plants or the equivalent to 
the entire capacity currently being used for PCR across the European continent. 

In the UK, new services such as dynamic containment frequency response service was launched last year. 
Due to challenging prequalification requirements, the service is currently undersubscribed allowing 280 
MW of batteries to bid on this market each day. Battery domination is likely to persist, in these fast 
frequency response (FFR) services, due to very fast reaction time in milliseconds. Dynamic containment 
prices settled around an unofficial floor price of 17 pounds/MW/h. Market participants will seek 
alternative opportunities if prices are lower and National Grid (TSO) rarely accepts higher bids [16]. 

c) Restrictions 

Restrictions on operational level, which should be considered when estimating availability of flexibility for 
PV-battery storage, or when planning its use, are:   

i. storage charging state, when battery is fully charged or empty it could only deliver flexibility in 
one direction;  

ii. conflict of interest between storage owner (optimising self-consumption) vs. flexibility aggregator  
iii. limitations in dis-/charging cycles per time period – to maintain battery health  

From an economic perspective, according to some studies, the return on investment in battery energy 
storage systems is often hard to reach in ten years, the typical battery warrant from OEMs. Also, technical 
preconditions for flexibility provision, as the roll out of smart meters, are lagging behind in several 
countries [17]. 

Furthermore, although there are positive examples, as the ones mentioned above, in many European 
countries, the regulatory and market conditions are not yet established to provide flexibility from BESS, 
and it lacks tangible business cases. Another problem is the potential saturation of frequency services 
with large battery and DSM deployment. The example of Germany, where the prices have dropped in 
parallel with growing residential battery installations, highlights this phenomenon (Figure 2-21).  
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Figure 2-21: German cumulative battery build and frequency control reserve, left (requirement), right (prices) [16] . 

 
Even in Australia’s State Victoria, taking into account public incentives at retail prices that are significantly 
higher than in Europe, the economic operation of battery storage remains difficult, as depicted in Figure 
2-22.  

 
Figure 2-22: Estimates of battery storage system payback periods in Victoria under the state’s battery incentive program and 

different value stream scenarios [19]. 

2.4 Other flexibility sources 
2.4.1 Refrigerator  
a) Characteristics of load curves:  

Domestic fridge power consumption is typically between 100 and 250 watts. Over a full day operation, a 
fridge is likely to use between 1 to 2 kilowatt-hours (kWh). The demand is typically influenced by its 
storage volume, location, season, usage frequency, temperature set point, age and condition. 

Contrary to other appliances, such as heat pumps or electric vehicles, refrigerators consume electricity 
throughout the entire day. They must be considered as appliances working 24 hours a day. In fact, the 
only time the compressor rests is when the inside temperature is lower or equal to the set temperature 
of the refrigerator.  

Also, refrigerators are non-adjustable loads. They are interruptible, either switched on (with fixed power) 
or off. The duration of each “ON” and “OFF” cycle depends on user preference settings and temperature 
conditions.  A typical load profile of a refrigerator is illustrated below. 
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Figure 2-23: Load profile of refrigerator [20]. 

Their typical load pattern is made of regular spikes (up to 0.37 kW here) and load stop (0 kw) when the 
desired temperature is reached. 

An average load pattern for refrigerators, independently of meteorological condition (Figure 2-24), has 
been realised by ADEME (French Environment and Energy Management Agency). It shows the lack of 
flexibility from a typical refrigerator/deep freezer. This is why refrigerators can be classified as continuous 
non-shift-able loads [20].  

Nevertheless, some manufacturer produce refrigerators intended to be able to provide flexibility, such as 
LG4 in 2011, with their so called “smart grid ready” product line. These devices could, for instance, adapt 
temperature set points in a narrow range, in order to shift load of the next compressor start to a later 
point in time – based on time-of-use tariff or external signals.  

 

Figure 2-24: hourly averaged load curve of refrigerators [21]. 

 
 
4 http://www.lgnewsroom.com/2011/04/lg-officially-launches-first-in-range-of-smart-grid-ready-smart-appliances/ 
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b) Potential flexibility provision type - time shifting:  

Some studies have tried to simulate the flexibility potential of refrigerators combined with a thermal 
storage system and a supply-following controller responding to fluctuating renewable generation. In a 
simulation, led by Taneja et. al [22], a typical home refrigerators was augmented with a network of 
thermocouples and power sensors to monitor its environmental and electrical operation.  

In the simulation, the refrigerator is able to use its communicative capability to react to grid constraints 
and consume more electricity in time of low demand and excess of variable renewable energy sources, 
consuming less in period of peak consumption.  

The results, illustrated in Figure 2-25, assume that with only 10% penetration of this kind of thermal 
storage, the load peak can be reduced by nearly 1 GW, representing around 10% of typical peak load from 
traditional generators in California. 

 

Figure 2-25: Operation of a thermal storage refrigerator as supply-following load. The refrigerator is works in three modes – 
High, Medium, and Low – based on the availability of renewable power by a real-time signal from the grid operator [22]. 

2.4.2 Washing machine 
a) Characteristics of the load curve:  
The typical load curve of a washing machine cycle will depend on several factors such as the program, the 
washing load and the energy class. The program often determines the selected temperature, the water 
demand and the spinning need. 

Washing machines have a base load during the execution of a cycle, which can vary between 100 W and 
120 W, depending on the washing machine type and brand. A washing machine cycle has four different 
states: switched off, base load, heating and spinning. The states are based on the operating principle. 
Spinning mode is hard to distinguish from base load in fifteen-minute data: the drum motor only spins for 
some minutes at full speed or spins lower than rated power. 
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Figure 2-26 below represents a modelled, aggregated load curve comprising 1000 washing machines, 
using a mean hourly load curve. We can see here a peak in the morning consumption towards 10:00 and 
a continuous decrease during the day. 

 
Figure 2-26: Example of a mean hourly load curve obtained by simulations of 1000 laundries for one year [23]. 

An average load pattern for washing machines, has also been realised by ADEME (French Environment 
and Energy Management Agency). It shows that the load curve is low during nights (22:00 – 06:00) and 
up from 07:00 steeply rises towards its peak around 08:00 to 09:00. During the day, the load profile 
progressively decreases, with a minor temporary rise between 19:00 and 20:00 (see figure below). 

 
Figure 2-27: average load profiles for washing machines.  

b) Potential flexibility provision type - time shifting:   

Some analysis to evaluate their flexibility potential has been made by comparing the load patterns of 
customers with single retail tariff prices and the ones of customers with peak and off-peak tariffs. This 
results in higher demand during the night, when the prices are lower. But one can notice that the peak 
demand is very similar and also arises in the morning between 9:00 and 10:00 (see figure below).  
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Figure 2-28: average load profiles for washing machines, single tariff vs. “peak / off peak” tariff. 

The load consumption of washing machines could eventually be shifted but is not interruptible (at least 
not without compromising energy efficiency, washing performance and comfort). The progress in home 
automation can help end-users manage this kind of devices smartly. The consumers could then plan the 
start of their washing machine based on DA prices or real time messages from third-party service 
providers, triggering the washing process within a customer defined time window. 

2.4.3 Dish washer 
a) Characteristics of the load curve:  

The determining factors for the load pattern of a dishwasher cycle are the washing programme and the 
energy class of the device. The programme can require extra water and has a temperature setting for 
washing and hot rinsing.  

Dishwasher cycles can be broken down in four different states: wash, rinse, dry and off. The states are 
translated into the detectable states heating, base load and off. Heating covers washing and hot rinsing, 
while base load is mainly intended for cold rinsing. It takes the device in average approximately 105 
minutes to complete all the cycles. During the operation of a dish washer, load may generally vary from 
maximum 1.2 kW to minimum 0.6 kW. 

Boßmann et.al. published analysis data from 5000 households in Ireland, measured over almost 1,5 years 
[24]. The aggregated load profile for these households, isolating the data of the dishwasher operation 
only and normalised per household, shows a small peak in the morning during weekdays (Figure 2-29). A 
second peak appears in the beginning of the evening, independently of the day of week or week-end. The 
load pattern is then quite similar for weeks-ends even if a higher volume is evident on Sundays. There is 
no real seasonal effect regarding dishwasher load pattern, which is similar in winter and summer time. 

Average hourly load curves for washing machines,  
distinguished by tariff 
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Figure 2-29: household load profile for their dishwasher operation [24]. 

 

b) Potential flexibility provision type - time shifting:   

A study led by KU Leuven in Belgium [25] tried to model the flexibility potential from dishwashers in the 
country, besides others. According to them, the potential time shift for this kind of device is between 3 
and 8 hours a day. 

Although the availability of these appliances is low, in practice this could be compensated by large 
numbers of controllable appliances, leading to an aggregated potential for flexibility. Figure 2-30 shows 
the results of this analysis for time shifting (or rather blocking) the start of dishwashers for either 0.5 hour, 
1 hour, 1,5 hours or 2 hours. The graphic shows the delay in the effective impact of setting the blocking 
signal for the different scenarios and the effect of a steep rise, once the blocking period is over. The 
absolute values account for all the devices in Belgium, available for participation at this point in time.  

 
Figure 2-30: Load profiles for time shifting flexibility from dishwashers (in Belgium) [25]. 

The conclusion from these studies is, that using this device in a flexible way has a low impact on total 
electricity demand. Nevertheless, an aggregated flexible load could be useful in the case of congested 
distribution grid with low flexibility available.  
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2.4.4 Tumble dryer 
a) Characteristics of load curves:  

Tumble dryers are more and more common in European households. In Europe, 4.9 million tumble dryers 
were sold for domestic use in 2005. More than 40 million tumble dryers are estimated to be in use in 
European households nowadays. It has been estimated for the US, where 79% of households owned a 
laundry dryer, that drying alone accounts for approximately 7% of US electricity consumption.  

The energy efficiency labelling system has shown to be effective in the development of more efficient 
products. A few years ago, most dryers were marked with a C label. Today, there are conventional tumble 
dryers marked with a B label, and some heat pump equipped dryers are even marked with an A label. 
According to the European Union, switching to one of the most efficient tumble dryers can reduce energy 
costs up to 50%. With more efficient tumble dryers, Europe will be able to save up to 3.3 TWh of electricity, 
equivalent to the annual final energy consumption of Malta. 

The main energy consumption elements of a tumble dryer are the resistive heating element and the 
electric motor that spins the drum. Air is heated by the resistive element with a rated power between 1.8 
and 2.5 kW. The energy consumption of the average load profile is considered to be around 2.46 kWh per 
cycle. An approximate cycle of a tumble dryer is illustrated with six power phases. The duration of each 
power phase is assumed to be 15 min.  

 
Figure 2-31: aggregated load profile for a dryer [24] . 

The aggregated load curve for tumble dryers, based on the analysis of smart meter data of 5000 
households in Ireland for the period of 1,5 years, normalised to the households, is illustrated in Figure 
2-31. The curve shows the steep rise of the demand after 6:30 approximately, followed by a moderate 
rise from 8:30 to 18:00, and dropping again towards the night. The winter week-day depicts a much higher 
load for tumble dryers, as compared to the summer period. Since this is aggregated data for 5000 
households broken down to the single home level, this can be explained by the fact that more people are 
drying their laundry outside during the summer.  
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b) Potential flexibility provision type - time shifting:  

One of the potential features of smart appliances that could facilitate load shifting is the used of 
communication modules. In this configuration, equipped households could respond to external signals 
based on prices, grid constraints or renewable production to provide different services to the grid.  
Labeeuw et.al. studied the effects of a delayed start, triggered by a remote signal, on the accumulated 
load of tumble dryers in Belgium (see Figure 2-32), delayed by 0.5 hours, 1 hour, 1.5 hours or 2 hours. In 
this example, it took longer until the full effect of all the available dryers for this time range was obtained 
since tumble dryers have rather long cycles and running dryers were not interrupted,. After the “recovery 
peak”, when the dryers are collectively allowed to start, it also took longer until “catch up” effect was run 
out.  

 
Figure 2-32: Impact of time shifting flexibility provided by tumble dryers [25] 

A study published in 2014 in Applied Energy [26] studied the flexibility potential of tumble dryers (in 
addition to washing machines and dishwashers) and considered these devices as very suitable for DR, 
since the user acceptance for flexibility services by these appliances is high due to the effects on comfort 
are low and the ownership rate of households (in the UK) high. The load management features of this 
study are smart start and cycle interruption. The smart start feature allows the appliance cycle to be 
shifted for example from evening to night, avoiding peak electricity rates, as illustrated in the figure below. 

 
Figure 2-33: Tumble dryer load profile and flexibility provision via smart appliance features [26]. 
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The results from this study indicated that the response of the considered appliances (washing machine, 
dishwasher and tumble dryer) is well suited to be integrated in the balancing services. The shifting and 
interruption of appliance operation, according to user preferences, resulted in a fast decrease in 
consumption at the system level.  
 
Indeed, using only 20% of smart white ware appliance in the UK (washing machines, dish washers and 
tumble dryers) could provide as much as 1.5 GW of reserve power in the UK, or up to 54% of the operating 
reserve requirements of the UK power system, depending on the time of day. 
 

 

 

 

 

 



  GA #864048 
 

D 3.4 Dissemination Level: Public Page 38 of 83 

3 Deterministic Flex Source Models 

3.1 Flexibility metrics and parameter 
The widespread uses of various demand-side flexibility resources will create challenges and opportunities 
for the distribution system operators (DSOs) to improve their task of power supply. Along with enabling 
digital technologies, pro-(con)sumers can adjust their energy profiles, motivated by incentives or price 
signals. In turn, this will make the demand response (DR) and demand side management (DSM) 
methodologies some of the reliable solutions to problems caused by renewable and distributed energy 
sources. Modelling techniques to capture such flexibility resources are important for planning, scheduling, 
and real-time operation. According to [27], there are three essential directions in order to be successful 
in developing these methodologies, including: 

1) Tractable models for individual device/consumer level, where the model is able to capture the 
most important characteristic of power consumption, but the model is still tractable for design and 
analysis. 

2) Aggregated models to show the aggregate behaviours of large number of consumers. 

3) Data-driven models based on identification and validation with actual data. 

In order to develop these models in a comprehensive manner, it is important to investigate different 
aspects of flexibility metrics and parameters associated with each of the flexible resources, such as fridges, 
freezers, washing machines, electric vehicles, heat pumps. Therefore, it is important to take these 
characteristics of flexibility, i.e. weather, time and geographical dependencies, into account to enable the 
development of demand-side flexibility for network and system services. 

3.1.1 Metrics for flexibility 
Harvesting (demand-side) flexibility implies tackling uncertainty which is usually simplified due to its 
mathematical complexity, such as by defining it in the form of a confidence interval [28], [29]. Flexibility 
metrics are therefore included in the market clearing formulations to incorporate the cost of 
remunerating its providers.  

Flexibility metrics were traditionally presented in form of magnitude, response, and frequency [30]. 
Magnitude metrics will capture the maximum positive or negative change, in a defined direction, provided 
by the sources or loads. Ramp response characteristics can be used to capture the dynamics of flexibility 
resources, measuring maximum magnitude change over various time scales. According to NERC [30], 
frequency metrics measure the frequency of ramp events for various sizes. Flexibility measurement based 
on econometrics was also achieved/demonstrated in [31], where the flexibility calculation is determined 
by unit capacity, minimum generation levels, start-up time, time horizon and production level, calculating 
both flexibility from offline and online units. There has been research concerning procurement and 
utilisation of flexibility in the power system in general, and the distribution system in particular. The 
flexibility requirements for proper wind and solar power integration in Europe are assessed in [32]. From 
this research, the ramp envelopes, the net load ramps, and ramp magnitude are found, and the resulting 
scenarios facilitate quantifying flexibility requirements. It has been shown that, when the share of wind 
and solar energy surpass 30% of the load consumption, the flexibility requirements increase abruptly.  
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To extend the concept of operational flexibility into demand flexibility, [33] addressed  a possible metric 
framework, integrating the characteristic of comfort management and building operation in possible 
flexibility services. In this research, a flexibility action, i.e., flexible power 𝑃𝑃𝑓𝑓 in [𝑘𝑘𝑘𝑘], can be described as: 
a) an increase in the power demand (up regulation);  and b) a decrease in the power demand (down 
regulation) with the following main (electricity) metrics: 

I. Ramping rate (𝜌𝜌) [𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚. ], i.e. how fast the flexibility asset can react; 
II. Power capacity (𝜋𝜋) [𝑘𝑘𝑘𝑘], i.e. how much power can be delivered as flexibility power; 

III. Energy capacity (𝜀𝜀) [𝑘𝑘𝑘𝑘ℎ], i.e. how much energy can be delivered during the flexibility action. 

In this particular research of exploiting flexibility from building thermal mass, two other metrics were 
considered, including the comfort capacity (𝜎𝜎+) [𝑚𝑚𝑚𝑚𝑚𝑚] and the comfort recovery (𝜎𝜎−) [𝑚𝑚𝑚𝑚𝑚𝑚] which 
reflect the building physical characteristics, e.g. construction type, area, or location. Depending on the 
nature of a flexibility source, this set of metrics should be adapted.   

3.1.2 Flexibility Parameters 
Flexibility resources can be classified based on their capability of adjusting their energy profiles. According 
to [34], [35], typical classes of flexible units are : 

- Uncontrollable;  
- Curtailable;  
- Time shiftable;  
- Buffer time shiftable;  
- Buffer;  
- Buffer-converter. 

By consolidating the profiles of these units, either price-based or incentive-base demand response (DR) 
programs can be deployed to procure the necessary flexibility. This, however, needs a consistent set of 
generic, formal device data models and associated parameters [35]. These parameters need to be generic 
and abstract to cover the most important characteristics of each flexibility class. Some main attributes of 
the parameters used in [34], [35] are presented in Table 3-1. 

Table 3-1: Main parameters used for each flexibility unit class. 

Class Main parameters Examples Availability Power Capacity 
Uncontrollable [Starttime, Endtime] [Static] Constant Television, lighting 
Curtailable [Starttime, Endtime] [Min - Static] Variable Solar PV  
TimeShiftable [Starttime, 

Startbefore, Endtime] 
[Static] Constant Washing machine, 

dishwasher 
BufferTimeshiftable [Starttime, 

Startbefore, Endtime] 
[Min – Static – 

Max] 
Variable EV (smart) 

charging, freezer  
Buffer [Starttime, 

Validtime, Endtime] 
[Min – Static – 

Max] 
Variable Battery storage 

Buffer-Converter [Starttime, 
Validtime, Endtime] 

[Min – Static – 
Max] 

Variable Heat pump, water-
tank storage 
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Depending on the chosen method to exploit demand-side flexibility, the flexibility parameters can be used 
in various forms, which have some advantages as well as disadvantages. In case of day-ahead (time-of-
use) price scheme, all flexibility unit profiles can be stacked on top of each other with full knowledge of 
associated parameters to ensure the synchronization with automated demand response [34]. The 
drawback is a lack of controllability at the customer premise, especially when the flexibility is higher than 
needed. On the contrary, real-time prices can be used to stimulate user responses, depending on priority 
and availability of user’s devices [36]. This however lacks transparency on how to determine an 
appropriate price to end-users and its alignment with other market prices. Furthermore, there is no 
feedback of the actual response, which can only be learned in the upcoming steps. In between these two 
typical schemes, incentive based methods are considered to accommodate both, the functionality 
perspective of involved stakeholders, e.g. DSO, and flexibility/comfortability of the user. The underlying 
concept is to translate incentives on the device level into a (day-ahead) scheduling problem to be solved 
by tailor-made optimisation algorithms with low computation power [35].   

Due to limited flexibility resource from the demand side, the above so-called (market-based) indirect 
control methods might resolve network problems, such as congestion, only partially. A combination with 
direct control methods is therefore important to secure the required  flexibility for congestion 
management [37], with high certainty and reliability. The following sections will explain, in more detail, 
the aspects of flexibility modelling of this solution.  

3.2 Model Formulation 
3.2.1 Nomenclature 

𝜋𝜋𝑡𝑡 Price 
𝑃𝑃𝑡𝑡,𝑎𝑎
0  Original (benchmark) load of appliance a at time t 
𝑇𝑇 Set of all time steps in a day 
𝐴𝐴bf Set of buffer appliances 
𝑥𝑥𝑎𝑎 Maximum buffer time for appliance a 
𝑆𝑆tf Transformer loading at time t 
𝑆𝑆rated Transformer’s rated power 
𝜋𝜋adj Price adjustment 
𝜏𝜏 Time shift of appliance 

𝜏𝜏a,min/𝜏𝜏a,max Minimum and maximum allowable time shift for appliance a 
𝐴𝐴ts Set of all time shift appliances 

 

3.2.2 Foreword 
This chapter focuses on the tractable models for individual device/consumer level as mentioned in section 
3.1. Flexibility, in the case described in this chapter, is enabled via market-controlled demand response, 
where the households respond to dynamic prices sent by the aggregator, by adjusting their initial load 
profile [37]. The same principle can be applied to different DR schemes by replacing the dynamic prices 
with appropriate incentives.  

To enable load modelling, the load curves of the home appliances can be generated with a bottom-up 
Markov Chain Monte Carlo approach as discussed in [12]. The preferential household load curve can be 
determined comprising of different devices. The devices are modelled differently for each type of 



  GA #864048 
 

D 3.4 Dissemination Level: Public Page 41 of 83 

flexibility classes as mentioned in Table 3-1. The EV, heat pump and freezer are categorized in the Buffer 
(including Buffertime, shiftable, and Buffer-Converter) classes. The Dishwasher and washing machine 
belong to the Time-shiftable class, while solar PV is considered as the Curtailable class. The Uncontrollable 
class, i.e. base load, does not respond to dynamic prices.  

The following sub-sections explain how the household load is subjected to the dynamic price from the 
aggregator as well as how the appliances in the household react to a dynamic price. 

3.2.3 Flexible Load Response Based on Dynamic Prices 
From [37], the detailed models of Buffer, timeshiftable, and curtailable flexibility classes are formulated 
as follows: 

1) Buffer Response Modelling 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑡𝑡,𝑎𝑎

�𝜋𝜋𝑡𝑡 × 𝑃𝑃𝑡𝑡,𝑎𝑎

𝑁𝑁𝑇𝑇

𝑡𝑡

, ∀𝑎𝑎 ∈ 𝐴𝐴𝑏𝑏𝑏𝑏  
 

(3-1) 

subject to, 
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𝑡𝑡=𝑘𝑘

= � 𝑃𝑃𝑡𝑡,𝑎𝑎
0

𝑘𝑘+𝑥𝑥𝑎𝑎

𝑡𝑡=𝑘𝑘

, ∀𝑎𝑎 ∈ 𝐴𝐴𝑏𝑏𝑏𝑏 , 𝑘𝑘 ∈ 𝑇𝑇 
 

(3-2) 

 
𝑃𝑃𝑡𝑡,𝑎𝑎 = 𝑃𝑃𝑡𝑡,𝑎𝑎

0 , 𝑡𝑡 ∉ [𝑘𝑘, 𝑘𝑘 + 𝑥𝑥𝑎𝑎],∀𝑎𝑎 ∈ 𝐴𝐴𝑏𝑏𝑏𝑏 
(3-3) 

 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡∈𝑇𝑇

�𝑃𝑃𝑡𝑡,𝑎𝑎
0 � ≤  𝑃𝑃𝑡𝑡,𝑎𝑎 ≤ 𝑚𝑚𝑎𝑎𝑥𝑥

𝑡𝑡∈𝑇𝑇
�𝑃𝑃𝑡𝑡,𝑎𝑎

0 � , ∀𝑎𝑎 ∈ 𝐴𝐴𝑏𝑏𝑏𝑏 , 𝑘𝑘 ∈ 𝑇𝑇 (3-4) 

The objective of optimization in Equation (3-1) is to minimize the cost of electricity, which consists of the 
electricity price 𝜋𝜋𝑡𝑡 times the power consumption at the same hour 𝑃𝑃𝑡𝑡,𝑎𝑎. The decision variable of 
optimization is the consumption level 𝑃𝑃𝑡𝑡,𝑎𝑎 at each hour. Constraint in (3-2) forces the total energy 
consumption over the period: 𝑘𝑘 ≤ 𝑡𝑡 ≤ 𝑘𝑘 + 𝑥𝑥𝑎𝑎 to stay the same, thus, allowing energy to be only 
redistributed within this period. Therefore, the parameter 𝑥𝑥𝑎𝑎 defines the width of the time window in 
which energy consumption can be redistributed. The value of 𝑥𝑥𝑎𝑎 is different for each appliance. Constraint 
(3-3) prevents any change in power consumption outside the period 𝑘𝑘 ≤ 𝑡𝑡 ≤ 𝑘𝑘 + 𝑥𝑥𝑎𝑎. Constraint (3-4) 
forces the adjusted energy consumption to remain within reasonable limits, such as the limits of the 
benchmark load throughout the whole day. 

2) Timeshiftable Response Modelling 
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(3-5) 

subject to: 
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𝑡𝑡=1
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(3-6) 

 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎 <  𝜏𝜏 < 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎      ∀𝑎𝑎∈ 𝐴𝐴𝑡𝑡𝑡𝑡 (3-7) 
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The objective of optimization in Equation (3-5) is to minimize the cost of electricity. In contrast with the 
previous device type, the decision variable now is the time-shift 𝜏𝜏. This refers to the amount of time the 
device is delayed, or advanced. Equation (3-6) ensures that the total energy consumption after shifting 
stays the same as before shifting. Equation (3-7) constrains the time-shift within two τa,min and τa,max. 
These limits are defined by the nature of the appliance 𝑎𝑎 and consumer preferences. It is worth 
mentioning that shifting a load beyond the 24th hour of the day 𝑡𝑡 + 𝜏𝜏 ≥ 24 pushes this load automatically 
to the first few hours of the next day. 

3) Curtailable Appliances Response Modelling 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑡𝑡,PV

�𝜋𝜋𝑡𝑡 × 𝑃𝑃𝑡𝑡,𝑃𝑃𝑉𝑉

𝑁𝑁𝑇𝑇

𝑡𝑡=1

 
 

(3-8) 

subject to, 
 0 <  𝑃𝑃𝑡𝑡,𝑃𝑃𝑃𝑃 < 𝑃𝑃𝑡𝑡,𝑃𝑃𝑃𝑃

0      ∀𝑡𝑡 ∈ 𝑇𝑇 (3-9) 

The objective of optimization in Equation (3-8) is to maximize the revenue from selling the PV’s energy 
yield. Since PPV is defined as negative consumption, the revenue maximization is expressed as cost 
minimization. Constraint (3-9) bounds the PV’s generated active power during time 𝑡𝑡 to the benchmark 
value for the same hour, which corresponds to the maximum power point tracking. 

 

3.2.4 Market Based Price Adjustment  
Based on the model described above for the optimisation of the load profile, in order to adapt to the 
flexible price, the device agents on level of each household participating in the DR scheme, will minimize 
their energy costs. During this optimisation based on electricity prices, carried out by several consumers 
in the LV grid taking similar decisions, a congestion problem might happen due to high flexible load during 
a time where electricity prices are low –. as a result, transformers may become overloaded. In such cases, 
the household load profiles will be re-adjusted. With an iterative process, the aggregator sends a new 
control signal, and the device agent will react by optimizing each device using (3-1) - (3-9). The adjusted 
price signal 𝑝𝑝𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛 is obtained as follows: 

𝜋𝜋𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛 =
1
5
� �

𝜋𝜋𝑡𝑡 + 𝜋𝜋𝑎𝑎𝑎𝑎𝑎𝑎 : 𝑆𝑆𝑡𝑡𝑡𝑡 ≥  𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜋𝜋𝑡𝑡 : otherwise

𝑡𝑡+2

𝑡𝑡𝑡𝑡=𝑡𝑡−2

 

 
(3-10) 

where, padj is the incremental price adjustment, S𝑡𝑡𝑡𝑡 is the transformer loading at time 𝑡𝑡 and Srated is the 
rated power. After every price adjustment, the system apparent power is recalculated using the optimized 
load profile with the adjusted price 𝑝𝑝𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛. The aggregator will run 20 iterations with the same 
optimisation routine, and if the load is still higher than the transformer rating, there will be no new control 
signal, the load will not be subject to change and other methods need to be investigated/explored. 

3.3 Numerical Simulation  
The study is performed on a modified IEEE European LV test feeder with 55 houses connected in single 
phase, with base load and flexible load variations. A 250 kVA rated transformer is used to supply the LV 
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network. There is also an additional LV feeder with an aggregated peak load of 150 kW assumed. The 
single line diagram of the IEEE European LV test feeder is shown in Figure 3-1. The simulation is repeated 
in 15 minutes time steps, giving rise to 96 time steps per day [37]. The simulation in this study is done 
using MATLAB file exchange [38] and the MATLAB Global Optimisation Toolbox [39].  

 

Figure 3-1: Topology of IEEE European LV network. 

3.3.1 Effects of Dynamic Price 
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Figure 3-2 Load changes based on dynamic prices. 

 

The simulation is done for a week. The resulting load differences for each flexible appliance, in response 
to dynamic prices, are shown in Figure 3-2.  It can be seen that based on the dynamic prices and 
constraints, the flexible load will optimize and try to operate during a time where electricity prices are low 
(orange profiles), with an exception of PV (4th row from top, depicted as negative load). The maximum 
adjusted load for each corresponding flexible load is shown in the table below. 

Table 3-2: Maximum adjusted load for each appliance based on dynamic prices. 

Appliances Maximum Adjusted Load (kW) Occurrence Time 
EV 8.9086 1st Day 21:00 
Heat Pump 9.4355 3rd Day 08:45 
Washing Machine 2.9505 7th Day 17:15 
Freezer 1.2342 3rd Day 23:30 
Dishwasher 4.1201 5th Day 20:30 

 

From Table 3-2, it can be seen that the highest modified load pertains to the heat pump and the majority 
of loads have their maximum changes during the evening. The results are indicative to quantify the 
amount of flexibility for each appliance, though studies with real data are essential. 

The total flexible load combined with the non-controllable load is also shown in the lower subplot of Figure 
3-2. The figure shows that, using dynamic prices as control signal can, in some cases, help to reduce the 
peak load. As in the 1st day, before the load profile is subjected to the optimisation function; the peak load 
is 1.0031 pu. which is slightly above the transformer rating. The peak load after optimizing based on the 
dynamic prices is 0.9684 pu. However, this is not always the case in this study, as it can be seen towards 
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the evenings of days 3 and 5. If the congestion already existed before the optimisation of individual load 
profiles by dynamic pricing, this could be the result of a lack of availability of flexibility, insufficiently high 
price signals or limited availability of flex due to the applied constraints.  But also based on the 
optimisation function, there is a potential of occurrence of congestions, during a time when electricity 
prices are low, as the flexible loads are optimized to be used during low electricity prices, simultaneously. 
If this happens, the market-based price adjustment is initialised. 

3.3.2 Effects of Price Adjustment 
Based on Figure 3-2, it is shown that, with exception of day 1, all other day peak loads are higher than the 
transformer rating. Thus, the market-based price adjustment is initiated, and a new price signal is 
obtained and used for optimisation.  Using the new control signal, each flexible appliance will be optimized 
again. This mechanism however depends on the availability of flexibility resources. Figure 3-3 presents 
the market-based price adjustment results on a “successful” day (7th day), i.e. the peak load is successfully 
lowered and kept below the transformer rating, and an “unsuccessful” day (3rd day), i.e. fails to keep peak 
load below the transformer rating. In both cases, the adjusted price control signals are higher during 
dynamic prices peak load time, deterring the flexible appliances to be used during that time. Thus, the 
device agent that corresponds to each flexible appliance reacts by lowering load consumption at that 
certain time, with the exception of PV. 

In case of unsuccessful peak shaving, neither dynamic prices nor market-based price signals can realise 
optimal rescheduling of loads to prevent transformer overloading. In the simulated week, this occurs 
during the 2nd, 4th, 5th and 6th days, where the total network load still exceeds 1 pu. This happens due to 
the lack of flexible resources to resolve the congestion, the lack of flexibility in that given congestion time 
period, which may be limited by household constraints. 

The aggregator fails, after integrating the optimisation procedure, to lower the peak load, and there will 
be no load profile changes. From the simulation, it is known that for the days where the market-based 
price adjustment is failed, the electricity price becomes so high, which is yielded from the iterative 
optimisation procedure. This happens due to lack of flexibility resources to resolve the congestion. The 
maximum adjusted load for each corresponding flexible load is shown in the table below.  

Table 3-3: Maximum adjusted load for each appliance based on adjusted prices. 

Appliances Maximum Adjusted Load (kW) Occurrence Time 
EV 19.6324 3rd Day 21:15 
Heat Pump 9.4286 3rd Day 08:45 
Washing Machine 2.8772 1st Day 20:00 
Freezer 1.2147 3rd Day 23:30 
Dishwasher 4.0761 7th Day 12:00 
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Figure 3-3: Price Control Signal Comparison in Day 3 and Day 7. 

The total load changes are the profiles shown at the bottom of Figure 3-4. According to the results, on the 
3rd day, the peak load congestion that occurs during 20:45 due to the dynamic price control signal and 
the peak load, is 1.0623 pu (orange profile). After the market-based price adjustment, the peak load is 
0.9874 pu, which is slightly lower than the transformer rating (yellow profile). On the 7th day, a peak load 
congestion occurs during 21:15 with a peak load at 1.0223 pu. After the price adjustment, the peak load 
is now 0.9928 pu, which is slightly lower than the transformer rating.  

 

 

Figure 3-4: Price Control Signal Comparison. 

 



  GA #864048 
 

D 3.4 Dissemination Level: Public Page 48 of 83 

3.4 Summary – deterministic modelling of flexibility 
This chapter presents a deterministic modelling approach for flexibility along with a market-based 
formulation for demand response based on price control signals. Numerical simulations show that a 
success in peak shaving depends on the availability of demand-side flexibility. To be able to mitigate 
network congestion, an indirect control method such as price adjustment would require sufficient amount 
of flexible capacity in the system which might be largely influenced by the certainty and availability of 
each flexibility resource.  

While it may be a possibility to use price control signals to procure flexibility, data driven models might 
be considered to quantify the amount of flexibility with higher certainty and less computation time. 



   
 

   
 

4 Data-driven models 
The previous chapter presented a deterministic approach to quantify flexibility from the residential sector 
on the distribution network level. Random scenarios of the consumption level for  7 types of household 
devices at 200 houses were generated. The random load profiles are based on historical data which reflect 
the consumption patterns in the case of a fixed tariff scheme .  

For a dynamic price profile, the load is expected to adjust in order to minimize cost. Each of the household 
devices adjusts its consumption profile to minimise cost, while satisfying a number of constraints 
necessary to preserve customer comfort. The difference between the benchmark load profile and the 
adjusted profile is perceived as flexibility. 

The downside of this approach is that a flexibility price has to be proposed and the adjusted load profile 
is calculated accordingly. The load adjustment requires solving an optimisation problem. During real-time 
operation, system operators are interested in reciprocating this process. That is, if the system operators 
require an amount of flexibility, then the operators seek to find the retail price of electricity which would 
provide the required flexibility. It is therefore necessary to find the optimum price profile heuristically (i.e. 
trial and error). Solving an optimisation problem for each trial is inefficient, unreliable and impractical 
when quick decisions are needed in a short period of time. 

The aim of this chapter is to develop a data driven model which is capable of replicating the optimisation 
result, and predict flexibility. A data driven model yields a prediction in far less time than solving an 
optimisation problem. Consequently, system operators have a fast and reliable tool to search for the 
optimum price profile that yields the required flexibility. In this chapter, we provide a top-level 
introduction on machine-learning. Then, we propose two artificial neural networks (ANN) models which 
are explored in this project, namely: convolutional neural networks, and recurrent neural networks. The 
working principles of the two models are explained. The performance of each model is analysed and 
compared. 

4.1 Mining flexibility  
4.1.1 Brief Introduction to Data Mining: 
Data driven models are computer based algorithms which analyse data and learn the latent relationships 
and patterns within the data. Data driven models can be classified into two types, according to the 
learning objective [40]: 

o Unsupervised learning: the algorithms aim to reveal latent trends and patterns in the data, such as 
identifying clusters in the data. This task becomes challenging when each instance of the data has 
multiple features (i.e. criteria). In mathematical terms, the data has multiple dimensions, and visual 
analysis is not possible. One form of unsupervised learning is reducing the dimensionality of the data 
by identifying the useful features, and eliminating less relevant features.  

o Supervised learning: find the relation between characteristics of data on one side, and an output of 
interest on the other side. The ultimate goal of finding such relation is to make useful predictions for 
new input data. Examples include: Predicting life expectancy of equipment based on usage pattern, 
text translation, and computer vision. 
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Supervised learning breaks further down into two types based on the nature of the data [40]: 

o Classification: There is a finite number of classes (i.e. groups), and the goal is to predict the 
affiliation of the input data (i.e. predict which group the input belongs to). In mathematical terms, 
the solution space is finite and discrete. Examples of classification tasks are: 
 Analyse x-ray images and identify a tumor: {yes, no}.  
 Predict the occurrence of a weather event such as: {rain, no rain}.  

In some advanced applications, the answer can be more than one class only. For example, the 
model analyses an image and names the objects in the image. Possible answers are limited to a 
number of objects: {car, horse, cat, dog, bird}. In one picture, a cat and a car are both present. 
However, the answers are still limited to the 5 objects {car, horse, cat, dog, bird}.  
 

o Regression: The output of prediction is a quantity. Examples include: predict the life expectancy 
of equipment based on usage patterns. Forecast temperature, solar irradiance and wind-speed. 
Analytical curve fitting models fall under this category. A renowned example of such models is 
linear regression, which is based on minimising mean-squared-error between predictions and 
actual output. 

Modeling the relationship between an input and output using a mathematical regression model (i.e. curve 
fitting) is simple, and provides physical meaning of the relationship between inputs and outputs. However, 
these models are not adequate with highly non-linear and high-dimensional data (i.e. data with numerous 
characteristics). Other computer algorithms were developed in the past for constructing data driven 
models. Examples are: decision trees, support vector machines, and Artificial Neural Networks (ANNs). 

4.1.2 Machine Learning & Deep Learning 
ANNs are mathematical models which imitate the structure of living brains. ANNs consist of neurons 
connected together. Each neuron carries out a simple mathematical operation and passes its output to 
other neurons. Consequently, a large network of neurons is capable of reproducing highly non-linear and 
complex mathematical expressions. Eq. (4-1) represents the general relationship between the input(s) 
and output of a neurons. While Figure 4-1 shows some of the most common activation functions, Figure 
4-2 depicts the previously mentioned process. A simple ANN, consisting of several neurons and layers, is 
shown in Figure 4-3. 

Output = 𝐹𝐹 ���𝑤𝑤𝑖𝑖 ⋅ 𝑥𝑥ij�
𝑖𝑖

+ 𝑏𝑏𝑗𝑗� Eq. (4-1) 

where: 

𝑤𝑤𝑖𝑖 (weight): a coefficient used to scale (weigh) the value of input (xi).  

𝑏𝑏: bias term 

𝑥𝑥𝑖𝑖𝑖𝑖: input to neuron (i) from previous neuron (j), or from the raw input data. 
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F(x): activation function of neuron. Common activation functions are: 

Hyperbolic Tangent (tanh) 
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
 Eq. (4-2) 

Sigmoid 
1

1 + 𝑒𝑒−𝑥𝑥
 Eq. (4-3) 

Leaky Rectified Linear Unit 
(ReLU) �𝛼𝛼 ⋅ 𝑥𝑥 𝑥𝑥 ≤ 0

𝑥𝑥 𝑥𝑥 > 0 Eq. (4-4) 

 

   

   
tanh(x) Sigmoid(x) Leaky-ReLU(x), 𝛼𝛼 = 0.1 

Figure 4-1 Most Commonly Used Activation Functions in Neural Networks 
 

 
Figure 4-2 Simple Neuron Architecture 
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Figure 4-3 Simple ANN with 1 hidden (middle) layer 

 

The task of developing a good ANN lies within optimising (i.e. varying) the values of wi and b for every 
neuron, until the ANN, as a whole, makes accurate and useful predictions. This process is referred to as 
training the neural network. 

The earliest attempts to develop computational models which imitate the functionality of the human 
brain date back to the 1940s [41]. However, the research into such models gained momentum when, in 
1975, [42] demonstrated an effective technique to train neural networks. This technique was based on a 
derivation and optimisation algorithm which was developed not long before. Consequently, ANNs designs 
and applications developed rapidly over the following decades and ANNs became the most widely 
implemented tool for building data-driven models. 

Advantages of ANNs include:  

1) Ability to handle large datasets with multiple dimensions. 

2) Ability to learn and reproduce highly complex relationships among data. 

3) Versatility: ANNs are utilised in different applications: {classification, regression}, {single output, 
multiple outputs} 

4) And, ANNs are highly customizable. 

On the other hand, ANNs have some weaknesses:  

1) ANNs are prone to overfitting. Overfitting is the case when a model memorises the data, rather than 
learns to understand the relationships within the data. The model appears to perform properly and 
make accurate predictions on data which it has seen before. However, when the model is fed new 
data, it makes wrong predictions. An example of overfitting is provided in Figure 4-4. Several 
techniques were developed to suppress overfitting. 

Middle Layer
Hidden Layer

Input Layer Output Layer

Input With 
3 Features

Output With 
1 Feature
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Figure 4-4. Demonstration of overfitting and underfitting Demonstration of overfitting and underfitting 

 

2) In contrast with mathematical regression models (i.e. linear regression), ANNs are unable to provide 
a physical interpretation of the relationship between the inputs and outputs. For large and modern 
ANN architectures, it is practically impossible to describe how the ANNs output is calculated from its 
input, in one mathematical expression. 

3) ANNs require big amounts of data to train. A larger and more complex ANN requires more data to 
train all the parameters. 

4) Input and output data must be modelled as quantitative. For example, text must be converted to 
vectors. 

ANNs are used widely in power system studies and analysis. ANN utilisation is not limited to time-series 
forecasting of weather conditions and load, but also for decision making and optimisation. Azman et. al 
[43] built a convolutional neural network (CNN) to assess the transient stability of a multi-bus multi-
machine power system in real-time. At the same time, a recurrent neural network is utilised to assess the 
small signal stability of a power system. CNNs are also employed in [44], [45] to classify power quality 
disturbance events in the power system. Miranda et. al [46] also utilise convolution neural network in 
predicting the status of remote power protection devices. Wang et. al. [47] utilise an advanced type of 
recurrent neural networks (RNN) for state-estimation in the power system, based on data feed from 
phasor measurement units. Yan et. al [48] employ a neural network for load frequency control. Finally, 
Sun et. al. [40] review the utilisation of neural networks in solving mathematical optimisation problems. 

The next section describes the working principles of the special types of ANNs, and how they were 
employed for mining flexibility in this study. 
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4.2 Developed data-driven models 
4.2.1 Introduction to Convolution Neural Networks 
The ANN model depicted in Figure 4-3 consists of a sequence of layers. Different characteristics of the 
input data are read separately. Visual data, such as images, are represented as matrices. Each pixel in the 
image is represented by one element in the matrix. The colour of the pixel is represented by the value of 
the matrix element. Analysing an image using the model in Figure 4-3 requires flattening the image's 
matrix of size [𝑚𝑚 ×  𝑛𝑛] pixels, to a vector of size [𝑚𝑚𝑚𝑚 ×  1] elements. This conversion destroys the shapes 
in the picture. If two images depict the same object but with a slight shift in position, the flattened images 
appear completely different to an ANN. This problem inspired the development of a special type of ANN 
which reads spatial data (i.e. 2D images, 3D maps, 3D topography maps, medical imaging) without 
flattening. This type of ANN is known as convolution neural networks (CNN). As the name inspires, the 
ANN uses a small window (also known in the literature as Kernels, or filters) to scan over the image. 
Adjacent pixels are scanned together, without distorting the shape. The process is depicted in Figure 4-5. 
In this example, the input to the ANN is the bottom (light blue) image of size [4x4]. The ANN uses a window 
(dark blue) of size [3x3] to read the image. The weights of the window (kernel) are trainable variables. 
Training the ANN incurs finding the optimum values of these weights. 

 

 
Element-wise multiplication 

Numerical Example of Convolution: Input Image size [5x5]. Window size [3x3]. Output size [3x3] 
 

    
Graphic Depiction of Image Convolution: Input Image size [4x4]. Window size [3x3]. Output size [2x2] 

Figure 4-5 Demonstration of Convolution Neural Networks 

In order to detect different features in an image, the moving window can be customised to different 
shapes (height x width), take larger steps, and customise the window’s task as well. The window in Figure 
4-5 multiplies its weights by the values in the input image, and the sum is taken. A moving window can be 
programmed to take the maximum value in a region, the average value or the minimum value. For 
example, taking the maximum value in a region helps detect edges of objects.  

In order to detect different features in an image, several windows with different weights are applied on 
the same image. The 2D output from each window is known as a feature map. The feature maps (also 
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known as layers, and channels) are stacked in the 3rd dimension as shown in Figure 4-6. The new stack can 
be fed to another CNN to run deeper analysis. For a 3D matrix (also known as tensor), a 3D moving window 
reads the same area of all feature maps at the same time, to produce 1 value per step. For example, an 
image with 9 layers requires a 3D window with 9 layers as well. To generate N feature maps from this 
image, N different 3D windows are required. It is customary for later CNN layers to apply a larger number 
of windows (larger N), and generate more feature maps (i.e. a stack consisting of a large number of feature 
maps) With each convolutional layer, the data shrinks in height and width, while the depth of the stack 
(i.e. number of feature maps) grows. These feature maps are independent. Flattening these feature maps 
does not distort the data, and the data can be fed to a fully-connected layer after a long series of CNN 
layers. 

 
Figure 4-6 Stacking the outputs of several windows operating on the same image 

 
Figure 4-7: 2D Convolution on 3D Tensor: 

Input Image (blue) size is [4, 5, 5]. Window (red) size is [2, 2, 5]. Output size is [3, 4, 1] 
 

4.2.2 Auto-encoders 
Auto-encoders are composite neural networks (i.e. consisting of several layers) which consist of two 
subsystems: 1) Encoder, 2) Decoder. The encoder part of an auto-encoder converts the raw input into 
another format. The data in this intermediate format is converted back to the original readable format by 
the decoder. The process is as follows: 

Human readable data (image) 
Encoder
������ encoded data 

Decoder
������ Human readable data (image) 
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There are many applications for auto-encoders, such as: 

- denoising/repairing distorted images: Input image is distorted or noisy. Fully connected layers 
are added in the middle, between the encoder and decoder. The encoded data are processed 
through these fully-connected layers, and the decoder produces a clean version of the input. 

- encrypting data: only a person who possesses the right decoder can convert back the encoded 
data to its sensible format. 

- data compression: The encoded data in the middle stage has smaller size, which saves storage 
space. 

The encoder consists of CNN layers which reduce the data size. The decoder reverse the convolution 
process applied by the encoder. The inverse of the convolution process is applied by a type of layer known 
as transpose-convolution (also commonly known as de-convolution). 

4.2.3 Quantification of Flexibility by CNN 
Here, we are utilizing the same use case and load profiles as described in chapter 3: Each instance of the 
data consists of a timestamp for the time of the day, the electricity price profile, and the benchmark 
consumption profile of an electric device. Each profile has 116 time steps, which represents 29 hours with 
a resolution of 15-minutes. The 3 profiles together make up a matrix of size [3x116]. Pre-processing the 
data will be discussed in a later section. 

The specific CNN design for the scope of this chapter is depicted in Figure 4-8. This design follows the 
concept of an auto-encoder. The working principle of the auto-encoder is: 

1) The encoder converts the data into another representation in an encoded space.  
2) The encoded data are processed by fully-connected layers. The fully-connected layers solve the 

optimisation problem. 
3) The decoder converts back the data from the encoded space to a readable format (i.e. adjusted 

load profile). 

For this auto-encoder to work properly, the model is constructed and trained on two stages: 

Stage 1) Create a preliminary model consisting of an encoder and decoder only. The encoder-decoder pair 
is trained to convert the input data (time, price, benchmark load) to the encoded space, and reconstruct 
the benchmark load profile as it is. It is important to keep in mind that, at this stage, the decoder should 
output the benchmark load profile, not the adjusted load profile in response to price. After completion of 
the training, the weights of the encoder and decoder are locked, and the encoder-decoder pair will not 
be trained in the next stage. This stage can be characterised as follows: 

• Model: Encoder output is fed directly to decoder output. 
• Trainable layers: Encoder and decoder 
• Input data: three time-series: time, dummy flat price of electricity, benchmark load profile 
• Output data: (to be predicted): Benchmark load profile. 

In principle, the encoder and decoder can be based on any type of ANN, and not exclusively CNNs. The 
role of the encoder-decoder pair in the bigger model is only to convert data from one format to another, 
and convert it back. 
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Stage 2) Fully connected layers are inserted between the trained encoder and decoder, which were 
obtained in Stage 1. The new composite model is trained to produce the adjusted load profile. In this 
stage, the encoder and decoder are fixed. The scope of training is the fully-connected layers only. The goal 
of training is for the fully-connected layers to solve the optimisation problem in the encoded space. 

• Model: Encoder output is fed directly to decoder output. 
• Trainable layers: Fully connected layer in the middle only. 
• Input data: three time-series: time, dynamic price of electricity, benchmark load profile 
• Output data (to be predicted): Adjusted load profile, in response to dynamic electricity price. 

The input data are passed by a convolution layer with 8 windows of size [1x1]. The output of this layer has 
the same height and width of the input data, but a depth of 8 layers. In fact, this step does not involve any 
convolution in the general meaning. In the output of this layer, each value is a scaled version of the input 
data. This helps the next layers to detect different features. The remaining of the encoder consists of 
normal CNN layers. On the other side, the decoder applies a number of transpose-convolution operations 
to create a vector with 116 time steps. 

  
Figure 4-8 Implemented CNN Model for Quantification of Flexibility. a) stage 1: training auto-encoder only. b) stage 2: 

Training fully connected layer for optimisation.  

4.3 Numerical validation 
4.3.1 Model Inputs and Outputs 
The input and output data of the physical deterministic model illustrated in Chapter 3 are used to train 
the data-driven model. Unlike the transmission network, line losses in the distribution network are 
significant. The location of a load on a distribution feeder also plays an important role in the voltage drop 
over the feeder. Therefore, analysing the aggregate (total) load profile of all houses in the network is not 
useful for flexibility quantification, and has little meaning or utility to the system operators. It is essential 
for the load profile of each house in a distribution network to be processed separately. Therefore, a data-
driven model must take in the price and historical load data for individual houses, and make predictions 
accordingly.  

Moreover, different electric devices, appliances or other DER have different characteristics, and must be 
modelled separately. It is important to design a versatile model which can process the input data of any 
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house, rather than having customised models for each individual house. At the same time, not all houses 
may have the same 6 responsive devices studied in this report. Therefore, a separate data-driven model 
is trained for each type of electric device.  

It is common practice to process the data before feeding it to the actual model. For example, text data 
must be converted into a numeric format. For numerical data, such as load profiles, it is necessary to scale 
the numerical data to a range [-1, 1] or [0, 1]. 

Different houses have different consumption patterns and characteristics, such as: peak load, cycle length, 
total connected load, and total daily energy consumption. It is not realistic to design and train separate 
models for each house. At the same time, if the exact same modulation, with the exact same parameters, 
is applied to the load profiles of all houses, then small sized houses will have semi-flat near-zero profiles. 
Alternatively, modulating the load profile of each house separately retains the unique characteristics of 
the house, while also retaining the unique consumption patterns of the device, from other devices within 
the same premises. In other words, the profile for each device in each house is normalised separately 
based on the profile’s own characteristics over the full-year. For example, in house #1, the EV 
consumption profile for the whole year is normalised based on the minimum and peak load over the whole 
year of this device in this house.  

As a result, a single instance of the data fed to the data-driven model has the following characteristics: 

- Consists of 3 profiles (3 rows): 
o Time of the day 
o Price 
o Benchmark consumption profile of the electrical device for the same day (historical data) 

- The profiles extend for 29 hours, at 15 minutes intervals. Therefore, the profile has 116 time steps 
- The input does not contain any information about the house ID.  

The goal of training a data-driven model is to reproduce the output of the optimisation. That is, to predict 
the adjusted consumption profile of the same electric device in response to a dynamic electricity price. 
The predicted consumption profile can be used by the system operator to assess the available amount of 
flexibility at each time period 

4.3.2 Data Pre-Processing 
The load profiles do not follow a Gaussian distribution. Hence, normalizing the data by its standard 
deviation does not guarantee that the majority of the data will fall within a range. Poor performance is 
observed with this normalisation technique. Furthermore, by normalising a load profile by its full range, 
as depicted in Eq. (4-5), rare load spikes inflate the range of the consumption profile, and the average 
consumption level appears to be close to zero. To mitigate this problem, data outliers or extreme events 
are removed. That is, instances below the 2.5 percentile, and above the 97.5 percentile are neglected 
when calculating the range. Consequently, the normalised load profile provides an accurate 
representation of the original load profile. We emphasize that extreme events above the 97.5 percentile 
are not removed from the data nor truncated, but merely neglected when calculating the normalisation 
range. In the normalized profile, these extreme events appear with a very large value (above 1), however, 
this is tolerable. 
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𝑃𝑃�  =
𝑃𝑃 −  𝑃𝑃min

𝑃𝑃max −  𝑃𝑃min
 Eq. (4-5) 

 
Figure 4-9 Trigonometric representation of time stamp:  𝑞𝑞 = 1
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Some household devices are used intermittently or occasionally, such as washing machines and dish 
washers. In some cases, the device is not switched on at all, and the profile is zero for a full day. No 
flexibility can be expected or acquired from such device, and it is justified to eliminate such instances from 
the data. 

Finally, it is important to note that representing the time of the day as a number between 1 and 23 
provides the ANN with a false impression that there is significant difference between 11PM and 12AM. 
Therefore, time stamps must be represented by continuous periodic functions. 

4.3.3 Training Process 
As explained earlier, the model development plan goes through two stages. An auto-encoder is designed 
and trained first, whose scope is to encode the data into a hidden space, and then decode the data back 
to a meaningful representation. After that, fully-connected layers are inserted in the middle of the auto-
encoder. The fully connected layers solve the optimisation problem in the hidden space. The same 
network architecture is used with all 6 devices. However, a separate network is trained for each device. 
The network architecture for stage 1 includes 1,595,417 trainable parameters. Three fully-connected 
layers are added in stage 2. These layers involve 19,845,044 trainable parameters. The training hyper-
parameters are given in Table 4-1. 

Table 4-1: Auto-Encoder Training Settings 
Parameter Value 
𝛼𝛼 (Leaky ReLU activation slope) 0.1 
Initial Learning Rate 9e-4 
Batch Size 32 
Learning Rate Reduction Period Every 100 batches 
Learning Rate Exponential Decay Factor 0.8 
Training/Validation/Test Split [70%, 15%, 15%] 
Training Algorithm Adam 
Training Objective Function Mean Squared Error 
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Since the benchmark tariff of electricity is not known, a dummy flat value is used to represent the price 
of the input data. The dummy value is taken to be 98% of the lowest price of electricity in the dynamic 
electricity price profile over the whole year. This choice of this tariff is based on the following notion. With 
the dynamic price profile, some devices do not adjust their output at all. Therefore, it is expected that for 
some low value of the dynamic price profile, no device will adjust its consumption. Therefore, we take 
98% of the lowest point in the dynamic price profile. 

The dataset is split into 3 subsets: training set, validation set, and test set. The actual training process is 
carried out using the training set data only. The training set is evaluated, and the error in prediction is 
calculated. The weights of the ANN are updated accordingly. The validation set is evaluated intermittently 
between steps of training, and the error in prediction is reported. The prediction error while evaluating 
the validation set is not used to update the weights of the ANN. The purpose of keeping a validation set 
is to monitor the performance of the ANN on extrinsic data, during training, rather than after training.  

If the validation error is significantly higher than the training error, then, it is likely that the ANN is 
overfitting the training data. In rare events, the validation set has a much lower error than the training 
set. This indicates that the validation set consists of easy cases, or the validation set is too small. In both 
cases, this means that the validation set is not a good representative of the whole dataset. A programmer 
can choose to terminate training if validation error plateaus, or even starts increasing (i.e. becomes 
worse). Finally, the test set is used after training to evaluate the performance of the ANN. 

During the training process, the training set is divided into batches of a smaller size. This is necessary when 
the training set is very large. Each batch is run through the ANN and the error in prediction is calculated. 
This process is denoted as a training “step”. The weights of the ANN are updated after each batch (i.e. 
step). When all batches have been run through the ANN, the ANN has seen the whole dataset. The training 
continues by feeding the batches again for another round. A full round of batches is denoted an “epoch”. 

4.3.3.1 Stage 1 
The training progress and performance of the model for the EV are illustrated in Figure 4-10. The same 
graphs are illustrated for the WM model in Figure 4-12. The left plot in subfigure (a) depicts the MSE value 
at each epoch of training. The MSE is used as the objective function for training the ANN. The right plot in 
in subfigure (a) depicts the mean-absolute error at each epoch of training. This metric is recorded for 
observation only, and does not affect the training progress. 

The final MSE value for the training set is 0.0015. The final MSE value with the validation set is 0.0032. 
This indicates that the model does not overfit the data. The training is designed to stop after 15 epochs if 
the percentage improvement in the validation error is below 0.001. It is noticeable that training 
commences within less than 20 epochs for all cases.  
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Figure 4-10 EV Load Profile’s Auto-encoder training progress (top) and performance (bottom) 

 

  
 

 
Figure 4-11 WM Load Profile’s Auto-encoder training progress (top) and performance (bottom) 

a) 

a) 

b) 

b) 
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The left plot in subfigures (b) depicts the benchmark load, and the reconstructed profile by the auto-
encoder. The right plot in subfigures (b) depicts the difference between the benchmark load and the 
reconstruction (i.e. reconstruction error). In conclusion, the auto-encoder model demonstrates very good 
performance. 

4.3.3.2 Stage 2 
Three fully connected layers are inserted between the encoder and decoder. The same hyper-parameters 
provided in Table 4-1 are used in the second stage, as well. Since a dummy price of electricity was used 
for the benchmark load (due to lack of data), it becomes necessary to retrain, at least, the CNN layer which 
applies a convolution window with a height of 3, and consequently, reads the three input profiles 
together. The augmented model is trained and results for the EV model are shown in Figure 4-12. The 
results for the WM model are illustrated in Figure 4-13. For the WM model, the final MSE and MAE values 
are 0.0031 and 0.012, accordingly.  

It is observable that the trained network succeeds at predicting the time-shift in the load event most of 
the time. The network, however, is less accurate at predicting the actual magnitude of the load. This result 
proves the validity of the design. However, a larger training set can contribute to better models. More 
importantly, knowing the actual tariff of electricity which the benchmark load is based on, is expected to 
improve the model’s performance. 

 
Training progress 

 
Example of Augmented Network Performance  

Figure 4-12 EV Load Profile’s Auto-encoder 
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 Training progress 

 

 
Example of Augmented Network Performance 

Figure 4-13 WM Load Profile’s Auto-encoder 

 
4.3.4 Model Speed 
Linear optimisation problems can be solved efficiently (i.e. in polynomial time). However, the flexibility 
quantification problem tackled in this report involves solving a separate optimisation problem for each of 
the 6 electric devices in each house. Each optimisation problem involves an iterative search for the 
optimum (i.e. primal-dual methods, simplex-method, etc.). With data-driven models, the model training 
process may require substantial amount of time. However, once the model is trained, the model is capable 
of processing input data to produce results immediately. At the same time, since the distribution network 
observes the same time stamp and price profile, the data-driven model can process a batch of houses 
simultaneously. 

During the execution of the physics-based deterministic flexibility model, the execution time is recorded 
for each device and each household. After training the data-driven model, we also take note of the 
execution time. Table 4-2 compares the execution times for each model. It is important to keep in mind 
that the deterministic and data-driven model were developed in separate software, which may have a 
slight effect on execution speed. 
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Table 4-2 Training & Evaluation Time Comparison 
Device Python Matlab 

 Convolutional Net 
Linear Program 
(milliseconds) Training  

(H:M) 
Evaluation 

(milliseconds) 
EV 00:25 – 00:35 2.7 - 3.5    8.3 - 35.9 

WM 00:09 - 00:10 1.17 – 1.89    13 - 32.6 

HP 00:37 – 01:18 0.895 – 3.84 0.175 - 6.27 

FR 00:10 +   12.7 - 36.2 

DW 00:16 – 00:20  0.5  - 2 0.196 - 4.27 
 

4.4 Conclusion – Flexibility assessment by a data-driven model 
This chapter developed a data-driven model for assessing flexibility. Data-driven models are computer 
algorithms which learn the relationship between input and output data, and then, attempt to make 
predictions on new input data. The data used to train the models in this chapter are the input and output 
data from Chapter 3. A model based on convolutional neural networks and auto-encoders is built on two 
stages. In the first stage, a preliminary model learns to convert the time profiles in the input data into 
another hidden space and reconstructs these encoded data back to meaningful time profiles. When the 
accuracy of this model is verified, the model is augmented with additional components which are able to 
solve the optimisation problem in the hidden space. Data driven models require time the first time they 
are built and trained. However, evaluating an input instance with a trained model proves to be much 
faster than solving the actual optimisation problem. Data-driven models are also capable of handling 
batches of instances at once. On the other hand, mathematical optimisation is solved for each instance 
separately. The preliminary (encoder-decoder) model demonstrates very good performance. The 
augmented model demonstrates good performance in terms of predicting the time-shift in a load event. 
The magnitude of the adjusted load is predicted with less accuracy. This can be attributed to the lack of a 
benchmark electricity tariff for the benchmark load. A larger network design would also perform better, 
at the expense of more training time, and computing power.  
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5 Stochastic programming models 
The main modelling approaches that represent uncertainty in sequential decision making problems 
include [49]: 1) stochastic programming, where there are future event scenarios associated with the 
probability of occurrence of each event, 2) Markov decision processes, where the uncertainty is only 
modelled for the next-step decision, 3) robust optimisation and chance-constrained optimisation, which 
uses uncertainty sets to constrain the operating points, and 4) reinforcement learning, which observes 
(instead of explicitly modelling) uncertainty. 

The data-driven models presented in Chapter 4 apply machine learning techniques on historical data to 
learn the relationship between the data and the available flexibility. In Chapter 5, the uncertainty is 
tackled via a stochastic programming approach. This approach uses future scenarios of uncertain inputs 
(e.g., renewable-based generation, electricity demand). These scenarios are generated using the forecasts 
which are available at the time when the flexibility must be quantified. 

The stochastic assessment of flexibility is provided by solving a scenario-based stochastic optimisation 
problem. The solution yields the minimum cost of operation for the owner of the energy resources, which 
are clustered together to offer both energy and flexibility services. The considered resources are PV 
systems and stationary BESSs, which are clustered together with the electricity demand to form a (grid-
connected) microgrid (MG) i.e., “a group of interconnected loads and distributed energy resources within 
clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid” [50]. 
Grid-connected MGs can be formed by a number of geographically contiguous assets and customers such 
as, for example, a neighbourhood of buildings. MGs can be represented and operated by local energy 
communities and they can enable significant amounts of grid flexibility, especially when they own and 
operate BESSs, which offer short ramp-up and ramp-down time. The MG owner, which is also the 
microgrid operator, aims to: 

1. Minimise the expected energy cost, 
2. Minimise the BESS aging cost, 
3. Maximise the expected profit from selling energy, 
4. Maximise the expected profit from offering flexibility services.  

The solution of the stochastic optimisation problem yields both, the microgrid energy scheduling and the 
dispatch of the BESS-based microgrid flexibility. Thus, the offered flexibility is not only defined by the 
technical constraints of the resources but also by the economic operational targets of the microgrid 
owner. The optimisation problem is solved at regular points in time (time steps), where the uncertainty 
model is dynamically updated before each simulation to consider the most recently obtained forecast 
profiles for renewable-based generation and electricity load demand. This dynamic update and solution 
approach is also known as the rolling horizon (RH) approach.  
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5.1 Mathematical Formulation 
This section presents the formulation of the stochastic optimisation model that is used to solve the MG 
energy management and flexibility dispatch problem. The MG is owned and operated by a third-party MG 
developer and the costumers of the MG are relieved from risks associated with investment, operation, 
and maintenance costs. This MG business model is called energy-as-a-service [49]. Thus, the MG can own 
both small-scale (residential) and utility-scale assets and DERs. The customers only pay for the energy 
provided by the MG or they might also share with the MG developer the profit of energy and flexibility 
services that the MG can offer. The MG customers could be, for example, a large commercial building, a 
number of residential buildings in the same neighbourhood (in which case the MG customers could be 
represented by a local energy community). 

It is assumed that the MG operator has a contract with an electricity retail provider that enables energy 
trading at wholesale electricity market price. It is also assumed that the MG operator has a long-term 
contract with a LFM operator to offer flexibility services. The type of flexibility service considered in this 
study is a capacity limitation flexibility service [50]. With this, the flexibility provider (in this case the MG 
operator) must ensure that the MG power import from the main grid remains below a threshold set by 
the LFM operator. 

The MG resources include PV system and BESS. The PV system and the BESS of the MG are connected to 
the upstream AC grid via a converter with bi-directional operation, since the solar energy and the BESS 
stored energy can be exported to the AC grid and, in addition, the BESS can be charged through both the 
upstream AC grid and the PV system (see Figure 5-1). Note that the following convention is used in the 
mathematical formulation of this section: the parameters of the optimisation model are denoted with 
upper case letters, while the decision variables are denoted with lower case letters. 

The positive variables 𝑝𝑝𝑡𝑡,𝑤𝑤
𝑖𝑖𝑖𝑖 /𝑝𝑝𝑡𝑡,𝑤𝑤

𝑒𝑒𝑒𝑒  are the imported/exported power from/to the grid at time step 𝑡𝑡 and 
scenario 𝑤𝑤, while the positive variables 𝑝𝑝𝑡𝑡𝑐𝑐ℎ/𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 refer charging/discharging power that the BESS draws 
from the grid and the PVs or injects to the grid. The state-of-energy (SoE) of the BESS is denoted by 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡. 
The parameters 𝑃𝑃𝑡𝑡,𝑤𝑤

𝑃𝑃𝑃𝑃, 𝑃𝑃𝑡𝑡,𝑤𝑤
𝐿𝐿  and 𝛬𝛬𝑡𝑡 respectively refer to PV generation, electric power consumption, and 

electricity wholesale market price. 
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Figure 5-1: Power flow of the MG 

The objective of the stochastic optimisation model is to minimize the expected MG cost, during the look-
ahead period, while also considering the forecast error of electricity load demand and PV generation. The 
length of the look-ahead horizon i.e., number of time steps, depends on the time discretization of the 
scheduling period, which is 24 hours.  The length can be reduced if electricity price data are not available 
for the whole 24-hour look-ahead period at the time of the simulation. The MG cost includes the energy 
cost (with the income from selling energy being subtracted), the cost due to peak power charge, the 
battery degradation cost, and the income for offering flexibility service.  

The formulated optimisation problem is solved in RH approach (see Figure 5-2) and in order to reduce the 
size of the optimisation problem (since scalability can be an issue in stochastic optimisation), the BESS 
control decisions (𝑝𝑝𝑡𝑡𝑐𝑐ℎ, 𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡)  are deterministic i.e., they are not dependent on the scenario. The MG 
power import and export (𝑝𝑝𝑡𝑡,𝑤𝑤

𝑖𝑖𝑖𝑖  and 𝑝𝑝𝑡𝑡,𝑤𝑤
𝑒𝑒𝑒𝑒 ), which can be controlled to a certain extent by controlling the 

BESS charging/discharging power (deterministic decision variables), are the only stochastic decision 
variables of the stochastic optimisation problem. Due to the RH approach, it is only the next step control 
decisions that are implemented after each simulation and the deterministic control trajectory can be 
updated considering the latest forecasts available with every new simulation. The rest of the control 
trajectory of each simulation is a provisional plan which is applied only in the case of loss of 
communication between the MG and the grid.  
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Figure 5-2: Illustrative diagram of the RH approach 

 

The objective function of the model is given by:  

min𝑓𝑓 = 𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝑟𝑟𝑝𝑝 + 𝑐𝑐𝐵𝐵 − 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�,  (5-1) 

 

where 

f im = ∑ ∑ Πw𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖pt,wimw∈𝒲𝒲t∈ℋ Δt, (5-2)  

f ex = ∑ ∑ Πww∈𝒲𝒲 𝐶𝐶𝑡𝑡𝑒𝑒𝑒𝑒pt,wext∈ℋ Δt. (5-3) 

 

The look-ahead time horizon and the time intervals are represented by ℋ and Δt in Eq. (5-2)-(5-3), 
respectively, while Π𝑤𝑤 is the probability of occurrence of scenario 𝑤𝑤. In Eq. (5-1) the first term (𝑓𝑓𝑖𝑖𝑖𝑖) is the 
cost of the imported energy and the second term (𝑓𝑓𝑒𝑒𝑒𝑒) is the revenue associated with the energy exported 
to the grid. The parameters  𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖/𝐶𝐶𝑡𝑡𝑒𝑒𝑒𝑒 , which are related with these terms in Eq. (5-2)-(5-3), denote the 
cost/revenue associated with energy import/export from/to the main grid. The electricity wholesale 
market price as well as the grid tariff and reimbursement fee related to import and export of MG energy, 
respectively, are included in these parameters.  The term 𝑐𝑐𝐵𝐵 denotes the cost of BESS capacity loss due 
to cycle aging and 𝑟𝑟𝑝𝑝 is the cost for the peak power drawn from the main grid, which satisfies: 

 

rp ≥ Cpp ∑ Π𝑤𝑤𝑤𝑤∈𝒲𝒲 pt,wim ,  ∀t ∈ ℋ. (5-4) 
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The power-based grid tariff 𝐶𝐶𝑝𝑝𝑝𝑝 is linked to the maximum average power of the studied period (measured 
per Δ𝑡𝑡). The last term in Eq. (5-1) is the reward for providing flexibility, where the positive variable 𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒 
denotes the flexibility bid and 𝑃𝑃𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the amount of flexibility in terms of peak power reduction. 
The parameter 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿  should be based on a value that the LFM operator and the MG operator can easily 
agree upon, such as for example the capacity at the grid connection point, so that the flexibility service 
can be quantified in a reliable manner. The value of this parameter is the same for all simulations to avoid 
the need of additional communication and coordination between the two operators. Constraints (5-5)-
(5-6) are added to model the offered flexibility service: 

pflex ≥ ∑ Πww∈𝒲𝒲 pw
Max,im,  ∀t ∈ ℋ𝒻𝒻, (5-5) 

 

pw
Max,im ≥ pt,wim ,  ∀w ∈ 𝒲𝒲,∀t ∈ ℋ𝒻𝒻, (5-6) 

 

where 𝑝𝑝𝑤𝑤
𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 is the expected peak imported power with ℋ𝒻𝒻 denoting the time period, when the 

flexibility should be activated. 

The power balance of the MG is given by: 

Pt,wPV + ptdis − ptch = pt,wex − pt,wim + Pt,wL ,∀t ∈ ℋ,∀w ∈ 𝒲𝒲. (5-7) 

 

The losses of the grid side converter are ignored. The optimisation model also includes technical 
constraints that model the BESS operation and degradation. The BESS scheduling and degradation model 
is described in detail in [51]. This model relates the SoE of the BESS with the charging/discharging power 
of the BESS (𝑝𝑝𝑡𝑡𝑐𝑐ℎ/𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑). 

5.2 Uncertainty Modeling 
To represent the uncertainty associated with the input values, the day-ahead forecast error of these 
values can be assumed to follow a Gaussian distribution [52]-[53] i.e., ℰ𝓉𝓉𝒫𝒫𝒫𝒫 ∼ 𝑁𝑁(0,0.12) and ℰ𝓉𝓉ℒ ∼
𝑁𝑁(0,0.052) for the error of PV generation and power consumption, respectively. Based on this, 2000 
scenarios are generated using the Monte Carlo method i.e., random sampling of the input variables, which 
are the available (most recent) forecasts. The forecast profile has the same horizon length and time 
resolution (number of time discretization steps) as the considered look-ahead horizon of the simulation 
and is used as the base scenario. If the forecasts were perfect, then there would be no forecast errors and 
there would be no need for stochastic optimisation; instead a deterministic problem could be used to 
decide on energy scheduling and flexibility. Since the forecasts are not perfect, a Gaussian random 
number generator is used to generate an error that follows the previously mentioned distributions for 
each time step of the available load profile. The values (of the base scenario) are then adjusted according 
to the generated errors and the outcome is one future event scenario of electricity load and PV 
generation. This process is then repeated to generate the desired number of scenarios i.e., 2000. It should 
be noted that more accurate techniques for the scenario generation can be applied to improve the 
uncertainty modeling i.e., the stochastic input data (𝑃𝑃𝑡𝑡,𝑤𝑤

𝑃𝑃𝑃𝑃  and 𝑃𝑃𝑡𝑡,𝑤𝑤
𝐿𝐿 ) to the optimisation problem.  
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After the scenario generation, a mix of fast backward/forward methods in the SCENRED tool of GAMS is 
used to create a reduced number of scenarios i.e., 120 scenarios, which are representative of the real 
variability of the input values, without substantially compromising the accuracy of the results. These 120 
scenarios are not equiprobable. A different probability of occurrence is assigned to each scenario by the 
scenario reduction technique. 

As explained before, the stochastic optimisation problem for optimal energy scheduling and flexibility 
dispatch is solved in RH.  Therefore, after the time horizon is shifted and before the next simulation, the 
base scenario forecast is updated to consider the most recent forecast (which is again used for generating 
the scenarios of the next scheduling period). The (shifted) look-ahead horizon of the next simulation also 
includes the part of the time horizon that was not considered in the previous simulation.  

The accuracy of the forecast values is progressively reduced within the horizon (the accuracy deteriorates 
the further ahead the time step lies in the future), which is why Solanki et al. [54] used non-uniform time 
resolution. In this report, the time horizon is uniform; however, the error distribution changes within the 
time horizon. Since the standard deviations (𝜎𝜎𝓉𝓉𝒫𝒫𝒫𝒫 = 0.1, 𝜎𝜎𝓉𝓉ℒ = 0.05), adopted from [52]-[53], referred to 
the day-ahead forecast error distribution, reduced standard deviations are used during the first parts of 
the time horizon. Thus, the standard deviation for the forecast error of the next time steps until the next 
hour ahead, as well as the time steps after the first hour ahead and until six hours ahead are assumed to 
be 10%𝜎𝜎𝓉𝓉𝒫𝒫𝒫𝒫/10%𝜎𝜎𝓉𝓉ℒ and 50%𝜎𝜎𝓉𝓉𝒫𝒫𝒫𝒫/50%𝜎𝜎𝓉𝓉ℒ, respectively. The change in the intra-day accuracy of the 
forecasts uses information from [54]; it should be noted, however, that the error distribution over the 
time horizon should be modeled in greater detail, which could be a part of a future work. Finally, the 
length of the time horizon in the RH approach might dynamically change before each simulation to avoid 
the need of forecasting electricity market prices. One example of these future event-scenarios for a 
scheduling period can be seen in Figure 5-3. 

  
Figure 5-3: Scenarios of the input data (ratio of PV power output and electric power consumption over respective capacities) for the 

next scheduling period, where lighter shades show the confidence intervals and the dark colour solid line shows the available forecast 
(base scenario). 

5.3 Flexibility Assessment and Dispatch 
The process of flexibility evaluation and dispatch, shown in Figure 5-4, corresponds to an intra-day and 
close to real-time LFM framework. The depicted time discretisation step is Δ𝑡𝑡 = 15 minutes therefore 96 
simulations (solutions of the stochastic optimisation problem) are needed to decide on the optimal energy 
scheduling of the MG resources for Day 1. 
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Figure 5-4: Process of flexibility dispatch. 

The MG operator does not receive a signal from the LFM operator about upcoming flexibility requirements 
until a later hour of the day. During this period, the MG operator applies a tentative schedule by solving 
the stochastic optimisation problem (without the integration of the flexibility service) in RH i.e., one 
simulation is performed at each time step as shown in Figure 5-4. If the LFM operator requires flexibility 
on a short notice within a day, then the MG responds with the flexibility amount and a stochastic 
assessment of the flexibility that can be offered by solving the stochastic optimisation problem as it was 
formulated in Section 5.1. The response is sent directly after the request e.g., in Figure 5-4 the flexibility 
request and response process would be initiated at 08:00 (Simulation 48) i.e., the time of announcement 
of flexibility requirement. After that, the MG proceeds with implementing an energy schedule which 
allows the dispatch of the flexibility amount. A penalty term can be included in the objective function to 
penalise deviation from the flexibility bid. The schedule is applied  until the simulation horizon moves out 
of the flexibility activation period (this is between 12:00-22:00 i.e., Simulations 48-88 in Figure 5-4) and 
then the MG operator can continue solving the energy scheduling stochastic optimisation problem 
without the integration of the flexibility service for the rest of the simulations. 

The simulations in the RH process can be described by the following steps: 

• Step 1: Choose the length of the time horizon (maximum length is one day). Reduce the length, 
if electricity price data are not available (the day-ahead spot market prices are updated at about 
12:45 at the previous day [55] therefore the time horizon, which is initially 96 steps in Figure 5-4 
is continuously reduced by one time step from Simulation 2 to Simulation 47).  

• Step 2: Obtain the day-ahead available forecast which has the same time resolution as the 
considered scheduling time horizon. Reduce the length if necessary, update the base scenario 
and generate new scenarios.  
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• Step 3: Solve the stochastic optimisation problem using the generated scenarios, price data and 
the SoE of the BESS, which was obtained from the previous simulation. These are the input data 
illustrated in Figure 5-2. 

• Step 4: Update the battery charging/discharging power of the next time step according to the 
solution of the optimisation problem and shift the time horizon by Δ𝑡𝑡. Go to Step 1. 

5.4 Simulation Results 
The optimal MG energy scheduling and flexibility dispatch problem was simulated for a day considering 
the announcement of flexibility requirement and the flexibility activation period as shown in Figure 5-4. 
The MG resources can be seen in Table 5-1. The residential electricity load data, the PV generation data, 
and the BESS data were scaled-up measurements obtained from [56]. Nord Pool spot market prices [55] 
as well as data from the website of the local DSO [57] (energy tariffs, power grid tariffs and reimbursement 
fee) were used to define the value of the parameters  𝐶𝐶𝑡𝑡𝑖𝑖𝑖𝑖/𝐶𝐶𝑡𝑡𝑒𝑒𝑒𝑒. The capacity at the connection point was 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿  = 253.2 kW and the time discretisation step is Δ𝑡𝑡 = 15 minutes. Simulations were performed 
according to the test cases described in Table 5-2. The stochastic assessment of flexibility, which is 
presented in Sections 5.4.1 - 5.4.3, is performed right after the time of the flexibility request (denoted as 
“Time of Announcement” in Table 5-2) with the information known at that moment (SoE of the BESS, 
electricity prices and most recent forecasts of load/PV power output over the simulation time horizon). 

Table 5-1: Electricity load and energy resources of the MG 

BESS Capacity (kWh) 625 
BESS Maximum Charging/Discharging Power (kW) 521 
PV Capacity (kWp) 10.6 
Peak demand (kW) 60 

 

Table 5-2: Test Cases 

 Time of 
Announcement 

Flexibility 
Activation Period 

Flexibility Assessment and 
Dispatch 

SoE at Time of 
Announcement 

Case A 08:00 12:00-22:00 Flexibility amount over whole 
activation period 

64% 

Case B 18:00 20:00-22:00 Flexibility amount over whole 
activation period 

46% 

Case C 08:00 12:00-22:00 Flexibility amount per time 
step of activation period 

64% 

 

5.4.1 Case A 
The simulation was repeated for three different prices of flexibility i.e., 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =50$/MW (low price), 
𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =100$/MW (medium price), and 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =200$/MW (high price). Figure 5-5a and Figure 5-5d 
correspond to the case with the lowest price of flexibility. As mentioned earlier, each stochastic 
optimisation problem comprises 120 scenarios. For each of the 120 scenarios, the actual amount of 
flexibility which the MG provided to the grid is recorded, and depicted as a histogram plot in Figure 5-5a. 
The x-axis represents the actual amount of flexibility achieved. The y-axis reports the probability of 
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achieving this amount of flexibility (in one or more of the 120 scenarios). Thus, the percentage reported 
in the y-axis is the weighted sum of the scenarios where a given flexibility amount occurs, divided by the 
weighted sum of all 120 scenarios (the weights are the probabilities assigned by the scenario reduction 
technique as explained in Section 5.2). The vertical red dashed line in each figure marks the value of 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿 − 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, where the value of the decision variable 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (flexibility bid) was obtained from the 
solution of the stochastic optimisation problem. This implies that the optimum solution of the stochastic 
optimisation involves few scenarios where more flexibility is provided, or where the system might fall 
short of meeting its flexibility target due to less offered flexibility.  

Similarly, the time at which this flexibility amount was provided to the grid is also recorded for each 
scenario, and depicted as a histogram plot in Figure 5-5d. Subfigures (b) and (e) report the same data for 
the case of medium price of flexibility. The data for the case of highest price of flexibility are depicted in 
subfigures (c) and (f). 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 5-5: The simulation results of Case A, where the probability distribution of dispatched flexibility and the flexibility bid (red 
dashed line) of the MG operator is shown in (a)-(c), while (d)-(f) show the probability distribution of the time occurrence of the 

MG peak imported power within the flexibility activation period for the flexibility prices of $50/MW, $100/MW, and $200/MW, 
respectively for each row. 
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With the low and medium prices (50$/MW and 100$/MW) of flexibility, there is 61% probability of 
dispatching the flexibility according to the bid (flexibility is dispatched for about 70 out of the 120 
scenarios) When the flexibility price is $200/MW, the probability of dispatching the flexibility increases to 
66%. Since deviation from the flexibility bid is penalized during the flexibility activation period, the desired 
flexibility can be substantially improved by careful tuning of the penalty factor, as long as there are no 
limitations due the technical constraints of the MG resources. In this case study, for a penalty equal to 
180 $/MW (taken from [58]) the flexibility is dispatched for all considered flexibility prices if the base 
scenario is assumed to be realized. 

As demonstrated in Figure 5-5 (d)-(e), it is hard to predict when the peak imported power, which defines 
the dispatched flexibility amount, will occur. However, there is clearly a higher probability that it will occur 
before 17:00 (68th segment). This implies that a large part of the BESS capacity is scheduled to reduce 
imported power during the evening high-peak period for the majority of the scenarios. This is done to 
increase the certainty of dispatching the desired flexibility; at the same time, however, there is less 
available capacity for power reduction for the rest of the flexibility activation period. It is also possible 
that the BESS might have to be charged before the high-peak period to ensure an adequate level of stored 
energy. 

Due to the large size of the battery and the fact that at the time of the announcement of flexibility, the 
SoE of the battery was 64%, the peak measured during the whole flexibility period is substantially reduced 
as can be seen in Figure 5-5 (a)-(c), where the peak reduction is above 248 kW (a peak reduction of 253.2 
kW would signify no import of power during the flexibility period). In addition, as the flexibility price 
increases, the probability of dispatching the maximum flexibility also increases. This leads to an almost 
50% probability that the maximum flexibility will be dispatched when the maximum flexibility price is 
applied ($200/MW in this case study).  

5.4.2 Case B 
In case B, the MG operator receives a flexibility request for a closer period in time. Theoretically, the MG 
operator has less liberty and fewer options to implement in order to meet the flexibility request. In 
practice, a shorter notice time did not, significantly, affect the dispatch of the flexibility due to the large 
BESS size and the adequate SoE level. The tighter flexibility activation period also contributed to improving 
the certainty of the dispatched flexibility with higher flexibility prices, see Figure 5-6 (a)-(c). The stochastic 
assessment reports a 59% probability of dispatching the flexibility according to the bid (flexibility is 
dispatched for about 68 out of the 120 scenarios) when the flexibility price is $50/MW, a result which is 
as good as that of Case A. At the price of $100/MW the probability was increased to 74% (86 scenarios), 
while at the price of $200/MW, the probability increases to 88% (102 scenarios). Again, for a penalty 
of 180 $/MW the flexibility is dispatched for all considered flexibility prices, if the base scenario is 
assumed to be realized. The time of occurrence of the peak imported power could also be predicted with 
higher probability in Case B, as seen in  Figure 5-6 (d)-(f), where the peak is more likely to appear at the 
beginning of the flexibility activation period, with a probability above 80% as the flexibility price increases. 
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(a) (d) 

  
  

(b) (e) 

  
(c) (f) 

Figure 5-6: The simulation results of Case B, where the probability distribution of dispatched flexibility and the flexibility bid (red 
dashed line) of the MG operator is shown in (a)-(c), while (d)-(f) show the probability distribution of the time occurrence of the 

MG peak imported power within the flexibility activation period for the flexibility prices of $50/MW, $100/MW, and $200/MW, 
respectively for each row. 

5.4.3 Case C 
In Case A and Case B, the amount of flexibility was calculated for the whole period of flexibility activation 
and refers to the reduction in the peak imported power during that period. Flexibility could also be 
dispatched in more frequent time steps during the activation period. In that case, the flexibility bid is 
indexed by 𝑡𝑡 (𝑝𝑝𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and the objective function of the stochastic optimisation problem is modified as 
follows: 

minf = f im − f ex + rp + cB − ∑ Cflex�PpeakL − ptflex�t∈ℋ𝒻𝒻 , (5-8) 

 

while constraint (5-9) is used to model the offered flexibility service: 

ptflex ≥ ∑ Πww∈𝒲𝒲 pt,wim ,  ∀t ∈ ℋ𝒻𝒻. (5-9) 
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Figure 5-7 to Figure 5-9 show that the probability of dispatch of a flexibility amount is at least equal to the 
value shown in the x-axis for each time step of the flexibility activation period at different flexibility prices. 
The MG is guaranteed to be able to provide its maximum flexibility during periods (48 – 54) and (66 – 86), 
regardless of the price of flexibility. However, the amount of flexibility and the probability of its occurrence 
vary in different ways, in response to change in the price of flexibility. 

For period t=65, the MG is guaranteed (i.e. probability 100%) to provide 230KW of flexibility with the low 
price of flexibility. However, it is impossible to provide any bigger amount of flexibility bigger than 230KW. 
With the medium price, it becomes even less likely to provide the 230KW amount. Increasing the price of 
flexibility further has the opposite effect. The MG is guaranteed to provide 230KW, and is also 98% likely 
to be able to provide 240KW. This increase in probability comes at the expense of the amount and 
probability of flexibility at t=64. 

 

 

Figure 5-7: The probability distribution of dispatched flexibility at each time step of the flexibility activation period, when the 
flexibility price is $5/MW. 
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Figure 5-8: The probability distribution of dispatched flexibility at each time step of the flexibility activation period, when the 
flexibility price is $10/MW. 

 

Figure 5-9: The probability distribution of dispatched flexibility at each time step of the flexibility activation period, when the 
flexibility price is $20/MW. 

5.5 Conclusions – Flexibility assessment by a stochastic models 
The stochastic programming model, which was developed for assessment and dispatch of MG flexibility, 
was used to formulate the MG energy scheduling and flexibility dispatch problem as a scenario-based 
stochastic optimisation problem, which was solved in RH. The stochastic assessment of flexibility showed 
a 61%-66% (Figure 5-5) probability that the flexibility bid could be dispatched, when the flexibility amount 
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(peak reduction) was evaluated considering the peak power of the flexibility activation period. A shorter 
time notice improved the certainty of flexibility dispatch at higher flexibility prices due to the improved 
accuracy of the forecasts that determine the flexibility bid. It should be noted, however, that BESS capacity 
limitations or other technical constraints (e.g., a lower initial SoE level) could substantially limit the 
probability of flexibility dispatch. Thanks to the RH approach, the probability of flexibility dispatch 
obtained by the stochastic assessment, which is performed at the time of the flexibility request, can be 
further increased depending on the penalty implemented for the deviation from the flexibility bid and the 
technical constraints of the DERs of the MG. 
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6 Conclusion 
Within this report, the authors presented the characteristics and constrains of various flexibility resources, 
such as heat pumps, electric vehicles, decentralized (battery) energy storage or smart appliances. As 
already demonstrated in pilot-projects and documented in reports and publications, such LV-level 
flexibility sources can provide flexibility by time-shifting loads, curtailment or buffering of energy.  

The Flexi-Grid project consortium develops concepts and procedures for the procurement of local 
flexibility and the market designs for local flexibility markets, besides other related topics. Stakeholders 
involved in these concepts require models and approaches to estimate the availability of flexibility for 
different purposes – be it the aggregators in the operational forecasting or DSOs in planning and operation 
of LV-grids with the help of flexibility, for instance. 

The deterministic modelling approach presented in chapter 3, to estimate the optimal amount of flexibility 
provision on individual device and household level, uses flexible electricity prices as control signal. This 
approach was studied using EVs, PV, heat pumps, washing machines, freezers and dishwashers as flexible 
appliances. Using an agent-based network architecture, the influence of different price control signals has 
been observed, by means of an optimisation function with the objective to lower energy costs for the 
households. Using solely cost optimisation on individual household level led to flexibility provision, 
triggered by the dynamic pricing, but might cause some problems such as congestions in the power grid, 
if this approach remains unbalanced by corrective measures, aiming at the optimisation of the grid 
operational state.  

An indirect demand-response method, such as market-based price adjustment, is chosen to mitigate this 
problem. However, by means of simulations, it is found that the price adjustment prevented congestions 
successfully only on some days, while on others not. It has been found that, on the days where the price 
adjustment fails to prohibit congestions, there is a lack of flexibility resources in this system which was 
unknow to the operator. It can be concluded that, when mitigating congestions using indirect control 
methods such as price adjustment, a higher uncertainty on the amount of flexible resources in the system 
needs to be considered. Another approach could be to utilize direct control methods for the power 
system, such as graceful degradation or load shedding.  

Identifying  the amount of maximum adjusted load based on the control signal, may potentially be used 
to quantify the amount of power flexibility. Though it means that the amount of flexibility is not certain 
and will only be a snapshot of the current situation of the devices and households in this distribution grid 
branch, based on the specific dynamic electricity price profile. While it is certainly a possibility to use 
deterministic models, such as the one described in chapter 3, using price control signals to procure 
flexibility, further studies with data driven models might be required to firmly quantify the amount of 
flexibility and its certainty. 

Such a data driven model has been developed in the framework of this project and the approach and its 
preliminary results are presented in chapter 4. Data-driven models are computer algorithms which learn 
the relationship between input and output data, and then, attempt to make predictions on new input 
data. The data used to train the models in chapter 4 are the input and output of above mentioned study, 
using dynamic pricing to incentives flexibility and the cost optimisation on individual household level. 
From perspective of a grid operator or aggregator, the cost optimisations (the algorithms, operational 
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state of the devices etc.) are unknown and running the optimisations for all devices and households during 
operation might be cumbersome or even too slow (see “model speed“ in chapter 4). Hence, the data 
driven model learns the behaviour of the optimisation functions based on historic input and output data, 
in order to be able to reproduce the reaction (available flexibility) based on a future dynamic price profile.  

A model based on convolutional neural networks and auto-encoders is built on two stages. A first stage, 
where a preliminary model learns to convert the time profiles in the input data into another hidden space 
and reconstructs these encoded data back to meaningful time profiles. And second, when the model is 
augmented with additional components which are able to solve the optimisation problem in the hidden 
space. Data driven models require time when they are built and trained. However, evaluating an input 
instance with a trained model proves to be much faster than solving the actual optimisation problem. 
Data-driven models are also capable of handling batches of instances at once, while mathematical 
optimisation is solved for each instance separately. The preliminary (encoder-decoder) model 
demonstrates very good performance. The augmented model demonstrates good performance in terms 
of predicting the time-shift in a load event. The magnitude of the adjusted load is predicted with less 
accuracy. A larger network design would perform better, at the expense of more training time, and 
computing power. 

Another important aspect of estimating the available flexibility, is the handling of uncertainties. Based on 
a different use case example than the previous mentioned models, the stochastic programming approach 
presented in chapter 5 incorporates also the uncertainty that is inherent to the load and renewable 
forecasts used in grid operation. In this use case, the flexibility service provided by the operator of a grid-
connected micro grid is a capacity limitation flexibility service, where a financial incentive is set for a 
certain time period in which the power import from the main grid should stay underneath an agreed 
threshold. I could be shown that by this approach, it is possible to provide decision support for operators, 
to assess the certainty with which the agreed max. power import could be met by the micro grid operator, 
under the uncertainty of renewable and load forecasts. Future studies, can consider combining the data-
driven models in Chapter 4 with the scenario-based stochastic optimisation of Chapter 5 and assess the 
available flexibility by using both historical measurements and the intra-day available forecasts for 
renewable-based generation and electricity load demand. 
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