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7. Project overview 
FlexiGrid is an innovation project funded by EU's largest research and innovation program, Horizon 2020. 

The project will create an enabling architecture for small and medium Distribution System Operators 
(DSOs) to unlock flexibility resources. Through a cross-sectoral integration and optimization of resources, 
especially those arising from coupling between different energy sectors, as well as demand response using 
charging schemes for electric vehicles (EVs) or storage, DSOs will be able to meet the future capacity 
shortage with flexibility and updating old systems with smart technology. 

In FlexiGrid, organizations from all over Europe cooperate to leverage digital and smart grid technologies 
at the grid edges. The project will deliver IoT platforms, peer-to-peer and peer-to-pool marketplaces, 
vehicle-to-grid, power-to-heat, and power-to-gas solutions, as well as innovative business models. 

FlexiGrid will equip DSOs with advanced tools to enhance the observability and controllability of 
distribution networks while demonstrating both pool-based and peer-to-peer market mechanisms. 
Furthermore, implementing these market mechanisms in the project’s demos will be facilitated by a 
flexible DSO-Customers coordination platform for efficient real-time trading of energy and grid services 
between market actors. 

The overall objectives of FlexiGrid are: 

• To develop an integrated architecture for flexibility measures and electricity grid services provided by 
electricity storage, vehicle charging, power-to-heat, demand response, and variable generation to enable 
additional decarbonization. 

• To define, test, deploy and demonstrate markets and market mechanisms that incentivize flexibility, 
in particular for mitigating short-term and long-term congestions or other problems in the distribution 
network such as voltage issues 

• To drive cooperation between DSOs, transmission system operators (TSOs), consumers and generators 
by defining market interactions, facilitating the integration of wholesale and retail markets and cross-
sector interactions 

• To deploy smart grid technologies to enable the architecture and markets, bringing actors together to 
participate as distributed energy sources, driving increased resilience of the electricity grid, increased 
system security, greater observability, higher automation and improved control of the grid 

• To enable future technical and commercial innovation by identifying barriers to innovation, developing 
pathways to regulatory and policy reform, developing business models, and through strategic 
collaboration. 
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1. Introduction 
Due to the massive increase of distributed energy resources (DERs) into the distribution grid, Distribution 
System Operators (DSOs) are facing increased complexity in the distribution system. While flexibility is 
considered as an alternative and affordable solution, the procurement and dispatching process of 
flexibility urges for an improvement of monitoring capability from the DSOs. This deliverable D3.1 aims to 
contribute to improving the development of network observability and risk assessment. On the one hand, 
network observability will be enhanced by exploring measurement data and advanced data analytic 
models, i.e., using physics-aware neural network structure. This allows a fair allocation of computing 
resources to deploy effectively (distribution) state estimation algorithms. On the other hand, this 
deliverable will devise a set of advanced schemes to identify imminent risks in different levels of the 
distribution network. Risks will be identified for different time horizons, including the scheduling phase to 
real-time operation. Novel probabilistic methods and data-driven distributed algorithms will be employed 
to predict network security violations based on the dynamic price, weather conditions and the behaviour 
of the end-users. 

The following Figure 1.1 presents the structure of the report as well as the interactions between the 
sections. In section 2, the requirements from the DSOs are discussed with an overview of the problems 
associated with an increasing penetration level of DERs. The state-of-the-art grid monitoring 
functionalities will be presented in section 3 to provide details of the techniques available in the literature. 
The development of advanced measurement infrastructure for the distribution system is discussed in sub-
section 3.1. Then, in sub-section 3.2, the data collection, the importance of data and IoT for grid-edge, 
and the data integrity are discussed. A survey in the context of forecasting, state estimation (SE), and risk 
assessment technique will be presented in sub-section 3.3, 3.4 and 3.5, respectively, to provide details of 
the techniques available in the literature. 

 

Figure 1.1: The overview of this deliverable. 

In section 4, two different SE approaches, physics-based and data-driven, are developed to enhance grid 
monitoring capabilities. In section 5, the risk assessment topic is further consolidated with a congestion 
forecasting technique. The conclusion and discussion on the contributions together with the connection 
with other WPs are concluded in section 6. 
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1.1. Background 
The main element of the emerging energy transition worldwide is the increase in renewable energy 
sources (RES), including especially solar PV and wind. However, these types of renewable energy are 
variable depending on the temperature, irradiation, and wind speed. Their integration into the traditional 
power systems could be a problem to the reliability, stability, and quality of power supply, e.g., power 
congestion or voltage stability. With the growth of DER, the flexibility from the customer's side becomes 
more and more important. This enables alternative options for the DSO to control and operate the 
distribution grids. While reinforcing the network is costly and time-consuming, the flexibility option could 
help the DSOs for the safe operation of their grid. However, trading energy without a good observability 
capability to reflect on actual states of the grid will result in an ineffective impact on resolving grid issues. 
It also hinders possibilities to maximize the utilization of existing assets and circumvent the need for 
extensive investment for network reinforcement.  

DSOs need to build a future intelligent distribution system for monitoring and controlling the system. For 
instance, the recent H2020 project FLEXICIENCY [1] has proposed and deployed services in the retail 
electricity markets ranging from advanced monitoring to local energy control and flexibility services. It 
aims to realize high quality and high velocity near real-time information stream on customers’ energy 
consumptions and prosumers’ generation while providing accessibility to metering data. At the 
transmission level, the H2020 FutureFlow [2] project opens up possibilities for balancing and re-
dispatching markets to new sources of flexibility and supporting such sources to act on such markets 
competitively. In particular, the H2020 Flex4Grid [3] project aims to create an open data and service 
framework for managing flexibility of prosumer demand and generation while utilizing cloud computing 
for power grid management. This approach would be relevant to facilitate the transition towards future 
intelligent distribution grids with DSO’s role as a market facilitator. 

 

Figure 1.2: Cross-platform for data sharing and grid monitoring adopted from H2020 project UNITED-GRID. 
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Especially, a cross-platform for data sharing and grid monitoring from H2020 project UNITED-GRID is an 
important development to integrate data measurement gathered from both grid and DER’s owners. 
FlexiGrid will adopt and strengthen this development with focuses on advanced physics-aware network 
structure for state estimation and integration of stochastic assessment framework for risk assessment.  
Figure 1.2 shows the principal of such a framework for data sharing, grid monitoring, and risk assessment. 
This enables control functionalities at the grid edges by leveraging the enriched energy data while 
addressing security and privacy issues thoroughly.  The ultimate goal is to enable optimal solutions for 
operating different local demands and allocating flexibility when and where it is needed. The involvement 
of DERs’ owners is important to provide relevant data as well as flexibility options, e.g., power curtailment 
or load shifting. 

1.2. Report outline 
 

The remainder of this report is structured as follows: 

• Section 2: introduces the needs of DSOs. 
• Section 3: presents the state of the art of different monitoring and risk assessment techniques. 
• Section 4: focuses on the SE model. 
• Section 5: explain a congestion forecasting technique for risk assessment purposes. 
• Section 6: concludes and discusses future work. 
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2. DSO needs, requirements for flexibility 
Due to the energy transition, the DSOs are facing many problems in their network. For instance, the 
natural growth in peak consumption is leading to constraints (voltage and current) on the electricity 
distribution system infrastructure. In addition, the inverse power from PV installation can cause the 
overloading of MV/LV transformers. Furthermore, with the large share of renewable energy resources, 
severe problems may occur by an unpredicted change of weather, such as network instability. This 
transition is also posing a serious threat to the security of supply and the affordability of energy bills. 

The purpose of this section is to: 

- Analyse the needs and requirements of DSOs 
- Understand how DSOs can use smart systems (tools) to monitor the grid, analyse the state and 

improve the operation of their system 

2.1. Challenges for DSOs 
Table 2.1 shows the summary of the flexibility services procured by DSOs. It describes the DSOs’ needs 
and which service could be used to cover that need. 

Table 2.1: System flexibility services procured by DSOs 

System needs Potential service Potential procurement 
mechanism Involved stakeholders 

Congestion 
management 

Generation 
adjustment, peak 

shaving 
Market DSO 

Voltage control 
Reactive power 

provision, market 
procurement 

Grid code DSO 

Maximizing DER 
connection and 

integration 
Curtailment Market, grid code DSO 

Investing efficiently in 
distribution grids Peak shifting Market, grid code DSO 

 

2.1.1. Congestion management 
The integration of RES into the distribution networks could cause a problem, where the electricity supply 
exceeds the network capacity or when the power consumption is higher than the power supply 
(congestion problem). The challenge is maximizing the grid hosting capacity while keeping the security 
and quality of the electricity supply. Thus, congestion management is needed for network capacity 
planning. Flexibility is a good option to solve local grid constraints; flexibility could come from distributed 
generators or consumers. Thus, the network reinforcement can be postponed until the flexibility services 
become costlier than the network expansion. Congestion management can be set up for a real-time 
manner or a long-term perspective. 
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2.1.2. Voltage control 
A grid code is the standard specification that defines the boundaries of the voltage, frequency, etc. DSOs 
need to follow this standard to operate the distribution network. However, with the rapid increase of 
renewable energy, more and more power is injected into their girds, causing voltage problems. By the 
coordinated control with the grid monitoring, the DSOs could use the DERs for voltage control and power 
losses management. 

2.1.3. Maximizing DER connection and integration 
Increasing the hosting capacity of the grid is necessary due to the increase in load consumption (EV, heat 
pump) and generation side (PV). In the distribution grid, rooftop solar is absolutely central to maximizing 
DER connection in the distribution system. However, it could cause a voltage rise in the radial distribution 
system. Thus, the term “curtailment” is used to solve this practical problem of voltage rise in the grid 
when the PV output capacity (supply) is higher than the load (demand). In order to maintain the power 
balance in the system, curtailment is a potential service. 

2.1.4. Investing efficiently in distribution grids 
These challenges mentioned above can be solved by reinforcing the distribution grid. However, it is a 
costly solution, and DSOs want to postpone it until other methods cannot ensure the safety operation in 
their grids [4]. Demand response or peak shaving is a technique used to change the load profile, shifting 
it from peak hours to off-peak hours. By this way, it helps DSOs avoid power congestion, voltage deviation 
or reduce network losses. Therefore, it could postpone the investment in grid expansion or reinforcement. 
In the end, DSOs can effectively invest in their system. 

2.2. Needs and requirements 
As shown in Figure 2.1 below, the scale of energy transition ahead is immense. Renewable generation is 
expected to meet 80% of Europe’s future energy needs [5]. DSOs realize that the current model of 
‘connect and reinforce’ is not efficient for the future and that they will need to overcome the passive 
relationship between DSO and network customers. 

 

Figure 2.1: Electricity generation in the 95% EU economy decarbonisation scenario (Twh/year) [6]. 
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As per the European Commission study, it is estimated that around €11 billion per year is needed to 
reinforce distribution grids [7]. Specifically, DSOs are looking at smart tools to: 

- Monitor DERs across all voltage levels 
- Create visible overpower flows, loads and connections at the local distribution level 
- Enable the integration of flexible solutions across the network 
- Develop platforms for procuring flexibility services to balance the local grid 

The extent to which the above functions are required by DSOs varies on a regional or market basis. For 
example, DSOs are likely to be carrying out increased activities around service facilitation and system 
coordination and maybe less around restoration services. The underlying competencies required to 
deliver these six functions are evolving. DSOs need greater visibility, advanced monitoring and more 
control over the electricity flowing across their grids. Below in Table 2.2, the core functions currently 
performed by DSOs are presented, and subsection 2.2.1 will explain some of these use cases in detail. 

Table 2.2: DSO core functions. 

DSO Core Functions Use Cases 
Network operations Asset management system 

Investment planning 
(network development) 

Visualization of investment work (modernization/reinforcement) 
planned on network  

Maintenance of electricity 
infrastructure (protection 
arrangements and 
restoration)  

Visualize live tenders for regions where DSO is seeking flexibility 

Service facilitation (provision 
of network access services 
and other services for users) 

Visualization of the hosting capacity of renewable energy resources 
(RES) on the distribution grid 
Geolocation current power outages or planned interruptions 
Geolocation an EV charging points  

System coordination Common access register for smart metering data and settlement 
system 

 
2.2.1. Use cases visualization of DSO functions 
In this section, we introduce several innovative use cases enabling proficiency within these DSO functions.  

1. Visualization of the hosting capacity of renewable energy resources (RES) on distribution grid: 
- DSOs need to strengthen the business case when they request approval from the national 

regulation authority (NRA) on tariff rate justification. By showcasing a more transparent 
distribution grid network capacity to NRA as well as all the grid influencers— solar and wind 
developers, energy storage players, electric vehicle charging stations, etc. allow them to 
determine where it would be easier and more cost-effective to connect to the electricity 
distribution network and how it may affect their development plans and investment options. 

- As seen in Figure 2.2 below, the colours range from the dark blue areas, which have a hosting 
capacity value of DERs over 3.5MW, to the brown areas, which have a hosting capacity value of 
less than 0.5MW. The blue areas generally mean that a project should be good to go, and brown 
means that a project may not be feasible without major upgrades. With access to this data, a 



  GA #864048 
 

D 3.1 Dissemination Level: Public Page 16 of 61 

project developer can prioritize a project where interconnection is most likely quick, easy, and 
inexpensive. 

 

Figure 2.2: Example of visualization of hosting capacity. 

- This kind of mapping also helps DSOs in understanding how the connection of a significant amount 
of solar PV capacity or EV stations in certain regions of the distribution network may cause 
violation of the voltage band or local congestions of network elements. 

- In addition to the map shown above, spreadsheet analysis of data could be derived with a row for 
each different substation and feeder, which provides the maximum and minimum hosting 
capacity value at each location as well as the limiting factor for each. 

2. Visualization of investment work (modernization/reinforcement) planned on network  
- By analysing various parts of the distribution system, DSOs can identify areas with ageing 

infrastructure, areas with overload in system components, areas with various system loading 
conditions, and areas with frequent power outages. Below in Figure 2.3, an example of an 
interactive investment map developed by the SP Energy Network in the U.K is shown. 
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Figure 2.3: Interactive investment map in the UK [8]. 

3. Visualize live tenders for regions where DSO is seeking flexibility 
- The rapid growth of new hotspots for large scale solar and wind farms, EV charging, data centres, 

etc., is causing congestion-related issues such as feeder overload, constraints (voltage and 
current) on the infrastructure. For example, in Turkey (within the OEDAS DSO region), many PV 
installations are in long feeders and far from customers. At the same time, production is more 
than consumption in some MV feeders, so the voltage is increasing beyond acceptable limits 
representing congestion on the network. 

- Flexibility could be used in order to manage congestion, balance individual portfolios, control, and 
restore the voltage of the grid. In this project, flexibility is defined as a temporary increase or 
decrease in energy exchange with the network based on DSO's needs. 

- In Figure 2.4, an innovative mapping tool is developed by Western Power (DSO in the U.K) to 
display the current and potential future flexibility needs across the distribution network. For each 
region where a potential demand constraint has been identified by the DSO, a request for 
generation turn-up or demand turn down can be published. Here, flexibility (offered by 
distributed or industrial consumers) could be used in order to manage congestion, control, and 
restore the voltage of the grid.  

 

Figure 2.4: Current and potential future flexibility needs across distribution networks in the UK [9]. 

4. Geolocation current power outages or planned interruptions 
- DSOs have been mapping power outages or planned interruptions to provide proactive customer 

engagement. Just by entering your postal code, all planned outages and interruptions that could 
impact your building/apartment will appear on the map. Below is an example of a smart tool 
developed by ORES (DSO in Belgium). 
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Figure 2.5: Smart tools developed by ORES (DSO in Belgium) [10]. 

5. Common access register for smart metering data and settlement system 
- Due to energy transition, ancillary service from TSO grid users is reducing, and TSO is looking to 

acquire more flexibility from DSO customers. DSO is looking forward to contributing as a neutral 
market facilitator of flexibility market products by measuring data, verifying contractual 
compliances, and processing (aggregation, baseline calculation) of data for settlement [11]. This 
is a challenging task since DSO also needs to maintain operational security and quality of supply 
for their network.  

2.3. The remaining challenge for grid monitoring capability 
2.3.1. System flexibility services procured by DSOs 
As aforementioned, flexibility services seem to gain increased importance for distribution network 
operations. However, in the distribution level (medium or low voltage), the flexibility services provided by 
grid users or small DERs owners are still less predictable. The limited sensing in the distribution grid, the 
unpredictable and changing nature of renewable energy, the unknown user’s behaviour, etc., are 
challenging the implementation of flexibility services. 

This fact brings in the importance of grid monitoring in distribution grids. Hence, it is essential to 
implement SE and prediction into the distribution network, which can give the DSO valuable grid 
information in the nearly real-time or long-time prediction. So, DSOs will be able to define renewable 
energy production or electricity consumption together with grid state, and therefore, provide the system 
flexibility services (voltage control, congestion management). 

2.3.2. Grid state estimation and prediction 
One of the main contributions of this report is developing the SE for the distribution system. The 
traditional SE has been applied in the transmission system, playing an important role. For the distribution 
system, the SE and state prediction become more and more essential for the integration of renewable 
energy. State prediction is more about the forecasting of load consumption or power generation. 
Depending on the historical data or the physical data of the PV farm or wind farm, the power generation 
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capacity can be estimated for different time horizons. At the same time, the load consumption of 
households is estimated depending on the customer's behaviour and historical data. This model can help 
the DSO, for example, with a day-ahead market or system planning. SE is mainly used for voltage 
magnitude or voltage angle estimation. SE model uses the grid or customer measurements as input, and 
the estimated state can be in real-time or nearly real-time. With the estimated state, the DSOs can 
determine the risk in the system or the current situation, hence having good decision making. Both SE and 
state prediction are crucial tools for grid monitoring and situation awareness. 
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3. The current state-of-the-art in grid monitoring functionalities 
In this section, we will discuss in detail the current state-of-the-art in grid monitoring functionalities, as 
shown in Figure 3.1. The process from data processing, grid monitoring, and risk assessment will be 
addressed in the following subsections. 

 

Figure 3.1: The overview of gird monitoring functionalities. 

3.1. Development of advanced measurement infrastructure (AMI) for the distribution 
network 

AMI meters measure and record data frequently (real-time, minute, hour, day, etc.). These data are used 
for various purposes (e.g., billing, forecasting). The AMI meters have two ways of communication 
capability (recording or transmitting data). To achieve the intelligent grid, the distribution system should 
be operated as an active grid. That means the grid must be monitored; the controller must control the 
systems smoothly. AMI plays an important role in the intelligent grid. Figure 3.2 shows some kinds of 
measurements in the distribution system and their application. As the first step, the data from grid 
measurements or customer measurements must be collected. Then, grid monitoring and risk assessment 
can be employed based on the collected data. This section will discuss the available data, data sharing, 
forecasting techniques, SE, and risk assessment in the distribution system. 

 

Figure 3.2: Application of distribution measurement technologies. 

3.1.1. Customer measurements 
Customer measurements are the measurements obtained from smart meters installed in customer 
households. These measurements have different time resolutions, and they can be either un-
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synchronized or synchronized. If the smart meter is synchronized, it will take measurements at the same 
moment. For example, if the time resolution is 15 minutes, measurements will be taken at 0, 15, 30, 45, 
and 60 minutes. In contrast, the un-synchronized measurements will be taken randomly within the time 
interval. 

At the same time, with the rapid increase of EVs, the EV charging profiles could also be used as customer 
measurement data. Several studies have already analysed the impact of the uncoordinated charging of 
EVs in voltage profiles. So, residential smart meter data or EV charging profiles could be used as input for 
grid monitoring. 

3.1.2. Grid measurements 
The essential advanced measurement must come from the grid side. It could be power sensors, phasor 
measurement units (PMUs), micro phasor measurement units (𝝁𝝁-PMU), or substation meters, as shown 
in Table 3.1 below. These types of measurements are used to observe the behaviour of the grid, either in 
the steady-state or dynamic state. The accuracy of these devices highly depends on sampling and 
reporting rates. 

Table 3.1: Comparison of advanced measurement devices in distribution networks [12]. 

Type Reporting 
period: 

System 
Observability Measured Quantities Sensor Accuracy 

Power Sensors 1 sample 
each (2–4) s Steady State 

Voltage (RMS) 
Active Power, 

Reactive Power 
±0.5% 

Smart Meter 
1 sample 

each 1–60 
min 

Load Profiles 

Active Power, PF 
Reactive Power 

Frequency, Current, 
RMS Voltage and 

Power Quality data 

Active Power: ±1% 
Reactive power: ±2% 

𝝁𝝁-PMU 
Up to 120 
samples 

each second 

Dynamic and 
Transient 

State 

3 Ph-Voltage phasors 
3 Ph-Current phasors 

Active Power 
Reactive Power 
Frequency, PF 

Amplitude: ±0.05% 
Angle: ±0.01% 

PMU 
10–60 

samples 
each second 

Steady and 
Dynamic State 

3 Ph-Voltage phasors 
3 Ph-Current phasors 

Active Power 
Reactive Power 
Frequency, PF 

Amplitude: ±1% 
Angle: ±1% 

Substation 
Meters 

1 sample 
each min Dynamic State 

Active and reactive 
power flow, complex 

current and 
complex voltage 

±0.5% 
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3.2. Data sharing 
3.2.1. Digital transformation at the Grid-edge 
Regarding the grid monitoring functionalities such as SE and state prediction, measurement data play an 
important role. As aforementioned, limited sensing in the distribution system causes the unobservable 
distribution grid. However, refer to the “grid-edge”, the new transition in the distribution system, which 
brings in the benefit from the internet-of-thing (IoT) cloud system into the traditional distribution system. 
The EVs, solar PVs, storage with their IoT platforms could provide an amount of system information, which 
could be used to enhance the grid monitoring capability. 

 

Figure 3.3. Example of ABB cloud-based digital platform [13]. 

Figure 3.3 shows an example of ABB could-based platform, where the measurement data from DER such 
as storage, PV, wind, a micro-grid is collected as cloud-based. Then, the DSOs will be able to operate, 
analyse, or maintain their grid. However, the challenge is how to handle the big data in this distribution 
system. Big data refers to the volume, velocity, and variety of the collected data, i.e., smart meter or other 
IoT devices. 

- Volume is the amount of collected data. It can be too large to store and takes time to analyse 
using traditional technology. One of the solutions is to use local storage systems and then connect 
them with the ICT services. 

- Velocity refers to the speed of the generated data. It could be 15, 30 minutes, an hour, or real-
time, depending on the measurement devices. It is also a big challenge to collect and analyse the 
data in real-time, which comes from PMU or μ-PMU. 

- Variety refers to the types of data, which could be voltage, current, power, charging profiles. In 
addition, it could have various kinds of data structures and time resolution. 

Thus, there is a need for new technology to collect, handle, analyse, and share the data throughout the 
distribution grid. 

- Data collection 
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In general, there are two kinds of data in power systems, including operational data and non-operational 
data. Operational data is the data related to network operation parameters (i.e., voltage magnitude, 
voltage angle, power flow, etc.). These data can be collected using advanced metering infrastructure 
(AMI), phase measurement unit (PMU), or supervisory control and data acquisition (SCADA) system. On 
the other hand, non-operation data is the data that helps network operators in network operation, 
management, and control. Non-operation data includes weather data, electricity market data, customer 
behaviour data, etc. 

- Data handling, data analysis 

With different data sources mentioned above, data handling and data analysis are the important 
processes to get useful information that can be used for system operation. Data handling is the process 
of gathering, recording, and presenting the data from the historical or real-time measurement data. First, 
some different issues such as bad data, missing data or errors in the measurement process need to be 
solved by either mode-based or data-driven based methods. After that, the data need to be analysed to 
predict or calculate the needed information. For example, the historical weather data is used to forecast 
further weather information (i.e., irradiance or wind speed), which is used to better estimate the power 
generation from renewable energy. 

3.2.2. Data integrity 
- Privacy 

In the EU, the general data protection regulation (GDPR) was applied with specific rules on data protection 
[14]. GDPR also concerns the electricity sector. Personal data relates to a person (i.e., household data 
from the smart meter in the distribution grid). Smart meters are electronic devices that record the 
household consumption data and communicate with the utility operator for billing and monitoring 
purposes. While processing the data (i.e., collecting, storing, analysing, sharing, or erasing), the GDPR 
must be followed. The detailed physical infrastructure of a smart meter (e.g., in the Netherlands) is shown 
in Figure 3.4 below. It has four communication ports. Port P0 is used for installation and maintenance; 
port P1 is used for the communication with other devices installed in the customer's house; port P2 is 
used for connection with other local metering devices (i.e., smart gas/water meter); port P3 is used for 
the communication with the DSO, for sending their power consumption. 

 

Figure 3.4: Standardized smart meter and surrounding infrastructure [15]. 
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- Security 

As in the traditional power system grid, the system is mostly a stand-alone system. However, with the 
increasing availability of ICT technology in the distribution grid, the grid gets more connected nowadays. 
However, a few smart meter data have leaked in the past years, which raises the question of system 
security. The security concept could be either from the DSO point of view or the customer perspective. 
From the DSO point of view, cybersecurity is not only deliberate attacks but also ICT errors or equipment 
failures. With the increase of connection points in the system, this problem becomes more and more 
challenging. In parallel, with sharing the power consumption data, a lot of private information about 
personal life may be disclosed. 

- Transparency 

For the distribution system operation, the accuracy of system modelling is highly important. However, it 
highly depends on the input of the available data. The stochastic model of renewable energy is built from 
historical data. Other necessary data for energy systems modelling is load estimation, electric price data, 
or generation capability. There is still the issue of grid data unavailability and lacking transparency of data. 
Thus, some power system operators in Europe partially released datasets of their networks [16], such as 
ENTSO-E [17], TenneT Germany [18], British National Grid [19]. 

3.2.3. Data exchange platforms 
To overcome the above-mentioned issues, a data exchange platform needs to be developed, enabling 
system operators to use the available data effectively. Figure 3.5 depicts a data exchange platform, where 
different data inputs are collected and exchanged via a platform and then used by either TSOs, DSOs, end-
users or third parties. The data exchange platform can be centralized or distributed, operated by the 
system operator or third party, who ensures data integrity and provides non-discriminatory data access. 
Several European countries are planning to use such data exchange platforms [20], which are summarized 
in Table 3.2. 

 

Figure 3.5: Concept of a data exchange platform. 

Table 3.2: Status of data exchange platform implementation. 

Country Implementation status Year 
Sweden Planned 2022 
Finland Planned 2021 
Norway Operational 2019 
Belgium Operational 2018 
Denmark Operational 2013 
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3.3. Forecasting techniques 
Energy forecasting is a well-known technique used to predict the future of energy production and 
consumption. The rate of growth of energy is estimated at around 1.2% annually. Without the change of 
normal weather conditions, the peak load for winter periods (e.g. Pacific Northwest) is predicted to grow 
to 43,000 MW by 2030 [21]. So, energy forecast plays an essential role in distribution networks. In this 
section, the advantages and disadvantages of different forecast tools will be discussed. 

With the integration of renewable energy, the distribution network is becoming more and more complex 
and unpredictable. So, various forecasting techniques are developed around the world to overcome this 
problem. Different models and approaches are selected depending on the objective of system reliability, 
efficiency, optimization, etc. 

 

Figure 3.6: The most used forecasting techniques. 

Forecasting errors could cause unbalanced supply-demand, which affects the safe operation, quality of 
the service or even lead to local or system power outages. Overestimation of power consumption may 
lead to unused capacity (wasting the resources). Especially, without or lack of distribution system data, 
the forecasting model could not give an accurate result. Thus, selecting the right models to predict future 
energy trends accurately is an essential step for DSOs. 

3.3.1. Load forecasting 
Load forecasting (LF) is used to predict future energy consumption based on historical data, weather data, 
and the capability of RES. It helps the DSOs to balance the demand and supply of energy. LF is widely used 
for the prediction of future load on a power system for a specific period. These predictions may be for a 
fraction of an hour for the operation process and maybe for 20–50 years for planning purposes. LF can be 
classified into three main areas [22], [23]: 

- Short term LF is used to predict the load hourly for up to 1 week for daily running and cost 
minimization. 

- Medium-term LF usually predicts load weekly, monthly, and yearly for efficient operational 
planning. 

- Long term LF is used to estimate load up to 50 years ahead to facilitate expansion planning. 

Demand forecasting is an essential parameter for the operation and planning of a power system and has 
a great saving potential for the utility provider. However, an error in the forecasting model could cause 
an increase in operational cost, so an accurate mathematical model is required, which forms the 
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relationship between load and influential variables such as time, weather, and economic factor, etc. 
Forecasting models require estimation techniques to determine the model parameters. Numerous 
forecasting methods are proposed in the literature. The most used forecasting techniques are [24]–[30]: 

- Regression-based models: 

Problems exist in identifying the best model, which is due to the nonlinear correlation between electric 
loads and influencing factors. They are very popular due to their simplicity and generally good 
performance. Regression is used to estimate the relationship between different factors or predictors and 
the variable we want to predict. Linear regression assumes that these relationships are linear and try to 
find the optimal parameters (or weights) to minimize the prediction error. These models are used to 
correlate electric load and exogenous variables, i.e., maximum, and minimum temperature. Multiple 
regression models also exist to state the load as a function of exogenous factors. 

- Time-series approaches 

Estimate a future value given past values of a time series in the short term. It does not need additional 
time-series of the exogenous factors. A time-series operation performed at a minimal cost. A time-series 
method requires less historical data for operations. With the help of time-series statistical methods, we 
can evaluate the uncertainty of short-term load forecasting. However, the limitation of such methods is 
that they are time-consuming, they require a lot of human intervention, and they may become 
numerically unstable. The time-series method does not deeply study underlying patterns. With the time-
series method, it is difficult to find and interpret the sources of errors. If past observations are very good 
indicators of future observations, the dependencies may render linear regression techniques an 
inappropriate forecasting tool. 

- Neural Networks 

A neural network is a series of algorithms that endeavours to recognize underlying relationships in a set 
of data through a process, creating an artificial neural network that, via an algorithm, allows the computer 
to learn by incorporating new data. Neural networks can handle missing and noisy data, a large number 
of parameters or variables, and can work with non-linearity models. The neural network also has the 
ability to provide solutions for forecasting problems with a very good predictive result while they exhibit 
continuous learning. However, the implementation is difficult, the need for more resources for 
computational work (for the training phase). 

- Markov Chain 

The stochastic process model with discreteness presents a quantitative analysis of the status of a system 
from one state to another. This method is also used to analyse the reliability of the power system, energy 
consumption. Furthermore, the combination of the electric load has provided strong theoretical support 
for the price and demand forecast, etc. This method is simple, has computational speed and stability. It 
comprises the forecast of the conditional and unconditional probability distribution. 

- System Dynamics 

System dynamics is an interdisciplinary approach that combines the feedback and control of information, 
the decision-making theory, and computer technology. It is especially suitable for simulating the 
behavioural characteristics of nonlinear, high order, and complex time-varying systems. This method can 
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help in gaining insight and understanding in a messy situation by sketching increasingly sophisticated 
causal loop diagrams. However, defining each component or subsystem can be a very time-consuming 
job. Some issues that may arise are data availability, systems understanding, and systems uncertainties. 
A system dynamics diagram can become very complicated when actual situations with lots of variables 
are modelled. A system dynamics model can only run one version of a situation at a time, although it may 
capture a great deal of variety in the changing values of its variables. 

- Autoregressive integrated moving average (ARIMA) 

A time-series technique in which an own series history is used as an explanatory variable. Regression uses 
external factors as an explanatory variable for the dependent value. The method can capture the impact 
of weather on load. This method also provides a more straightforward model estimation and a more 
accessible interpretation of the model parameters. However, this is a univariate model. So, it cannot 
exploit the leading indicators or explanatory variables.  

- Exponential Smoothing Models 

The simplest exponential smoothing model puts exponentially decreasing weights on past observations. 
When the data contains a trend, a double exponential smoothing model is more suitable. This is done by 
having two exponential smoothing equations: the first on the overall data and the second on the trend.  
This method is easy to learn and apply. It gives more significance to recent observations. However, it 
produces forecasts that lag behind the actual trend. Sometimes this method neglects the ups and downs 
associated with a random variable. This method is not suitable for long-term forecasts because forecasts 
are not accurate when data with cylindrical or seasonal variations. 

3.3.2. Renewable energy forecasting 
RES (i.e., wind, solar) play an essential role in the power system [30]. At the same time, the uncertainties 
from these RES are a challenge for the power system, especially for the traditional passive distribution 
system [31]. The forecast of these RES is an essential topic as it has complete application in time-varying 
competitive energy markets, where the forecast accuracy plays a significant role concerning the economy 
and reliability of a renewable power plant [29], [32]. The prediction time horizon can be divided into four 
types: ultra-short-term, short-term, medium-term, and long-term prediction horizon [27]. The problem 
has been solved from various dimensions: physics (weather predictions), mathematics (probabilistic and 
statistical), machine learning, or the combination of these methods [31], [33], [34]. 

- Physical methods 

In this subsection, we will discuss the physical forecasting models, which are based on numerical weather 
predictions (NWPs). These models use the physical data of wind (temperature, pressure, terrain, the 
layout of a wind farm, etc.) as the input information and forecast the future parameter using 
meteorological models [26], [35]. Beneficially, this method does not require the training phase via 
historical data. The result is suitable for the short-term prediction horizon. The challenge is the availability 
of the physical data and that it requires specialized equipment, making this method not applicable in many 
cases [24]. However, these methods are still developed and applied in the real system for wind and solar 
prediction [25], [36]. 

- Statistical techniques 
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Unlike physical methods, statistical methods are purely mathematical. The idea behind these methods is 
based on historical data; the model will recognize the data's relationship or pattern [37]. The time-series 
models such as curve fitting, autoregressive, moving average are mostly used. The periodic curve fitting 
technique for an appreciable forecast accuracy was presented in [38]. Another approach is an adaptive 
autoregressive model that pre-processes the data and updates the output using the cursive least squares 
curve fitting method. The most popular method for short term forecasting is ARMA (combining the 
autoregressive and moving average). In [28], the detailed analysis of four ARMA based models was given; 
these were used to predict wind speed and direction. A combination of wavelet theory and ARMA model 
is used to pre-process the wind speed in time-series, then for forecasting. The integration of the wavelet 
transform into the ARMA model is also used to improve the prediction accuracy of the model. Similarly, 
in [39], linear models making use of seasoning and diurnal historical trends are also implemented for wind 
speed and direction forecasting. 

- Probabilistic methods 

In these methods, solar irradiation and wind speed are expressed as a probability density function (PDF). 
The Weibull distribution was found as the best fit for the wind speed profiles [40], [41]. Several methods 
were proposed to improve the forecast accuracy by estimating the Weibull parameters. The most used 
method is maximum likelihood, modified maximum likelihood, graphical, and energy pattern factor [42]. 
Besides the wind profile, there are some different probabilistic methods that are used to predict the 
uncertainty, such as Quantile regression and kernel density estimation. 

3.4. State estimation to enable flexibility procurement 
The first research works on the distribution SE were carried out in [43]–[48]. The distribution system state 
estimation (DSSE) based on node voltage rectangular and polar are developed in [48], [49]. At the same 
time, the DSSE based on current rectangular and polar are presented in [50]. In [51], the performance of 
the branch current and node voltage state estimator is analysed. The accuracy of the two methods is 
reported as the same. 

Most of the methods try to minimize the quadratic error. But, other methods like quadratic-constant, 
quadratic-linear, least measurement rejected, least median of square are applied to minimize the state 
error [52], [53]. For the non-normal distribution measurement errors, the probabilistic SE methods are 
used [45]. In this case, the PDF may be expressed based on equivalent Gaussian distributions [28], Beta 
distribution [45], [54], Gaussian mixture models [55], or via their own PDF [56]. Artificial Neural Network-
based SE techniques are proposed in [57]–[59]. Fuzzy logic state estimation techniques are presented in 
[60], [61]. Furthermore, the weighted least square (WLS) method is well selected for the DSSE application. 
SE applied to the distribution system may conduct to the system with hundreds or thousands of state 
variables. In these cases, it might be useful to split the SE problems into several areas as is proposed in 
[62]–[64]. The application of model-based and data-driven SE will be discussed in detail in section 4. 

3.5. State prediction for risk assessment  
Risk assessment on distribution networks has gained much attention in recent years due to the energy 
transition that results in the high penetration of distributed resources and renewables in distribution 
grids. The uncertainties associated with renewable generation as well as with loads that are dependent 
on end-user’s behaviour, such as EVs and heat pumps (HPs), have deteriorated the prognosis of the 
distribution level operation. Figure 3.7 shows some of the risk assessment methods and security 
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indicators. New techniques are proposed to comprehensively determine the level of the potential risk 
that the operation of a given distribution grid faces considering multiple risk factors [65]. In [65], 
probabilistic models are established to determine the uncertainties, including temporal distributions of 
EVs and uncertainties of renewable energy, while a time-sequential security risk assessment method with 
several security indicators including overvoltage and undervoltage risk, line-congestion risk, and load-loss 
risk is established using probabilistic load flow and dynamical sensitivity weight analysis method. 

 

Figure 3.7: Some of risk assessment methods and security indicators. 

Moreover, risk assessment methods based on probabilistic forecasting techniques can be used to forecast 
the locational marginal price (LMP) and the possible congestion of a given network.  For example, in [66], 
a probabilistic forecasting technique is developed based on a formulation that partitions the uncertainty 
parameters into critical regions from which the conditional probability distribution of the real-time LMP 
and equipment congestion is obtained. The proposed method incorporates load and generation forecast, 
time-varying operation constraints, and contingency models [66]. To this extent, risk assessment 
techniques (i.e., congestion forecasting methods) can be utilized to forecast the changes of the LMPs in a 
network and, thus, determine the future energy price and define a suitable market strategy [67]. 

The traditional risk assessment determines whether the system is secure or not in the present state and 
lack identifying the risk level. Moreover, when assessing and managing the risk associated with the 
performance of the distribution network of renewable energy projects by means of probabilistic methods 
could lead to significant risk exposure. Such probabilistic methods include those employed in the 
calculation of classical availability/reliability related performance indicators (e.g., SAIDI and SAIFI). This 
situation may be crucial when predicting the availability of the distribution system associated with 
renewable generations, such as wind farms [68]. The results presented in [68] show that the risk 
assessment for distribution networks with significant renewable generation could be underestimated 
when probabilistic methods that are more suitable to larger-scale power systems are applied. 
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Moreover, in [69], a multi-stage overloading identification method for risk assessment in a smart 
distribution network with historical, real-time, and forecasting load data is proposed. The risk level is 
classified according to the overload risk identification rules based on the overload severity. The proposed 
method identifies the location of the risk and the risk level of the alert region, which can be used to 
evaluate the risk assessment of active protection in the self-healing process in a smart distribution 
network. Furthermore, in [70], an algorithm for evaluating the operational risk for distribution systems 
with PV substation is used to effectively calculate the distribution system's risk indices and help 
dispatchers determine the optimum control strategy that introduces the lowest risk to the distribution 
system. First, the operation risk assessment relationship between transmission and distribution level is 
analysed to clarify the aim of the assessment and the corresponding assessment indices. Then, the 
operation mode and the protection technique of the distribution network are determined to obtain the 
presumed fault set and derive the probability of occurrence for elements in the fault set. 

Risk assessment methods can also be implemented to determine the suitable location and size of the 
distributed generation connected to a given network, either in the distribution or at the transmission 
level, to prevent the power lines' congestion [71]. Furthermore, risk assessment methods can be 
implemented for maintenance purposes and the inspection of the health of the equipment of a given 
distribution network. Due to the large number of items included in a typical distribution network, risk 
assessment methods can be implemented to improve the efficiency of the sample inspection while 
reducing the cost of the sample inspection [72]. In [72],  a risk assessment method based on state 
evaluation of equipment gets the risk value of equipment by assets, assets loss degree and mean failure 
probability of equipment, and builds the risk grades standard of equipment to facilitate the inspection of 
the health of the equipment in a given distribution network (i.e., distribution transformers). The risk 
grades standard determines the sample inspection proportion and the test items, and a sample inspection 
strategy of distribution network equipment is introduced for multi-objective optimization based on risk 
grades assessment. This strategy brings the sample inspection work of equipment into the assets 
management system and makes the sample inspection work more reasonable and economical. 

Furthermore, in [73], a method for state maintenance decision-making is developed, based on the 
evaluation of the real-time health status and the results of the risk assessment of the equipment of a 
distribution network. The real-time health index is evaluated based on the assessment of the equipment 
status, while the real-time failure rate is calculated following an exponential model. In addition, the 
average real-time failure rate of all equipment is calculated by the feeder partition method. The 
importance of the equipment is determined by the loss cost of failure assets, the equipment cost, and the 
environmental damage cost. Finally, the relative risk cost of each device is calculated based on the risk 
loss cost of each device. According to the indicator, the operation and maintenance mode and operation 
and maintenance sequence of different devices are determined, and a differentiated operation and 
maintenance strategy is formulated [73].  
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4. Physics-based and data-driven state estimation algorithms  
This section defines the model formulations for the SE problem both in the concept of physics-based and 
data-driven. The traditional SE methods rely on the number of measurements and the quality of the 
measurement. The well-known method for model-based is the WLS method. In parallel, the data-driven 
methods could be a good solution for the distribution system, where a lack of real-time measurements is 
a big challenge. 

4.1. Physics-based state estimation 
SE as a data processing algorithm is an integral part of a power system's control and security analysis. SE 
filters redundant measurement data and other available information, thus providing high accuracy for 
system states. With a significant increase of distributed renewable energy in distribution networks, DSSE 
becomes essential. However, a lack of real-time measurements can cause an unobservable system that 
highly affects the accuracy of the DSSE. In this report, we investigate the impact of a new measurement 
device, named LV-sensor, on the accuracy of the DSSE. The change point detection technique (CPD) is 
used to calculate the measurement variance from the collected data. The WLS method is implemented 
for estimating the voltage magnitude and angle of a real distribution grid of a university campus. The 
results of the DSSE with the input variance using these LV-sensor can significantly increase the accuracy 
of the DSSE. 

A lack of real-time measurements causes limited grid monitoring in the distribution networks, leading to 
limited application of SE in distribution grids [74]. Moreover, a massive integration of distributed energy 
resources into the distribution grid makes the DSSE more important than ever. To enable the DSSE, the 
grid must be observable. 

Observability is the ability of the state estimator for solving the SE problem, providing accurate state 
variables. Moreover, observability highly depends on the number of measurements in the network. The 
network becomes observable when there are sufficient measurements to perform the system states [75], 
[76]. An unobservable system consists of observable areas and unobservable areas. In this case, historical 
data (or pseudo measurements) are used to solve the SE problem with unobservable areas. In [77], a 
statistical approach is used for the generation pseudo measurements, which are extracted from standard 
load profiles. It has been shown that generating pseudo measurements can improve the performance of 
SE. Another method is the Gaussian Mixture Models (GMM) [78], where the objective is to represent all 
the load probability functions through GMM as pseudo measurements. Recently, many works have 
considered the application of machine learning algorithms. The ANN-based approach is used in [79] for 
generating pseudo measurements, active and reactive power injection. A new estimation method based 
on a clustering algorithm is implemented to estimate pseudo load profiles [80]. In [81], a novel data-driven 
method is developed to determine the daily consumption of customers (pseudo load consumptions), 
which consists of three different machine learning models as the clustering algorithm, multi-time scale 
learning model and recursive Bayesian learning method. 

In this section, we focus on analysing the applicability of devices for the DSSE. A low-voltage sensor (LV-
sensor) device is used to provide advanced real-time measurements in the LV grid, thus improving the 
accuracy and observability of the DSSE [82]. The LV-sensor is capable of high-frequency sampling (typically 
4kHz) and synchronizes each measurement sample with microsecond accuracy. In order to carry out the 
measurement’s variance, i.e., the quality of real-time measurement data, a novel approach for calculating 
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the covariance matrix based on online measurement without laboratory equipment is developed. The 
CPD method is implemented with the collected data from the Strijp-S substation in the Netherlands. Based 
on time-series data with the timestamp at the level of one-second resolution, the CPD detects any 
significant change of mean value, and the time-series data is divided into different stable sub-sections. 
Consequently, the variance is calculated for each time window. The well-known SE method [83], WLS, is 
used to perform the DSSE performance associated with the LV-sensors’ variance. The real distribution grid 
of the Chalmers University campus in Sweden is used as a test case. The power flow results performed by 
MATPOWER [84] are compared with DSSE results.  

4.1.1. Methodology 
- CPD Method 

The LV-sensors were used to measure the states of a substation in the Netherlands, which were developed 
in the UNITED-GRID project [85]. Considering only noise from measurements (the system is assumed to 
be static), the measurement function is as follows: 

 𝑧𝑧(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) +  𝜀𝜀(𝑡𝑡)  (4.1) 

where z  is a LV-sensor measurement, x  is the system state, and ε  is the LV-sensor noise. The noise is 
assumed as Gaussian random variable with zero mean and standard deviation σ . In theory, a set of 
measurements at time t from many “exactly same” LV-sensors installed at the Strijp-S substation is 
needed to estimate the system state. 

However, this is not the case in the real system. Thus, using the maximum likelihood estimator of 𝑁𝑁 
measurements is a straightforward statistical method [86]. In this case, the mean and variance of the 
random variable Z  considering N  measurements are as follows: 

 𝜇𝜇 =
1
𝑁𝑁
�𝑧𝑧𝑖𝑖

𝑁𝑁

𝑖𝑖=1

  (4.2) 

 

 𝑣𝑣𝑣𝑣𝑣𝑣 (𝜇𝜇) =
1
𝑁𝑁
�(𝑧𝑧𝑖𝑖 − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

  (4.3) 

 

However, power systems always vary due to changes in operating conditions. Figure 4.1 shows time-series 
data of voltage magnitude collected by LV-sensor from the Strijp-S substation. The changing of voltage 
magnitude is caused by the load changing or the uncertainty from the unpredictable renewable energy 
resources. Thus, the equations (4.2) and (4.3) will no longer be applied directly for real-time stream data. 
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Figure 4.1: Time-series data of voltage magnitude collected by LV-sensor. 

Considering a sub-section from the whole collected data, it consists of k  samples as: 

 

𝑧𝑧1 = 𝑥𝑥1 +  𝜀𝜀1               
𝑧𝑧2 = 𝑥𝑥1 +  ∆𝑥𝑥2 + 𝜀𝜀2 
𝑧𝑧3 = 𝑥𝑥1 +  ∆𝑥𝑥3 + 𝜀𝜀3 

… 
𝑧𝑧𝑘𝑘 = 𝑥𝑥1 + ∆𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 

 (4.4) 

where 1 2 3[ , , ]kz z z z z= …  is a measurement series, 1x  is the system state at time t, the vector  

2 3[ , ]kx x x x∆ = ∆ ∆ …∆  is the change of the system state compared to 1x . Vector x∆  shows the changing 

system operation conditions. As aforementioned, it is unpredictable. One approach for solving this 
problem is the CPD method [14], a well-known method for analysing the time-series data. The idea behind 
the CPD method is to find abrupt changes in the signal, and different sub-sections are distinguished by 
change points. Thus, each sub-section consists of a set of k  samples where the vector x∆  is close to 
zero. This means in the time window of k samples, and the system is static. Hence, equations (4.2) and 
(4.3) are applied to calculate each sub-section mean and measurement variance. 

 

Figure 4.2: Time-series data and change points. 
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Figure 4.2 shows an example of the time-series data and change points. It consists of j  change points, 

thus ( 1)j +  sub-sections are determined. Vector 1 2 3 1...[ , , ]jK k k k k +=  and, 1 2 3 1...[ , , ]jµ µ µ µ µ +=  are 

the number of samples and mean value of each sub-section, respectively. The CPD method considers the 
total sum of square of sub-sections as cost function, the cost function J  is as: 

 𝐽𝐽 = � � (𝑥𝑥𝑖𝑖2 − 𝜇𝜇𝑖𝑖1)2
𝑘𝑘𝑖𝑖1

𝑖𝑖2=1

𝑗𝑗+1

𝑖𝑖1=1

  (4.5) 

The objective is finding the j  value for which the cost function returns as small as possible. However, this 
process is straightforward if the number of change points is known. Otherwise, adding change points 
always gives a smaller value of cost function J . In an extreme case, every sample data becomes a change 
point, resulting in zero sum of square. Generally, this is an overfitting problem. A factor β , named 
threshold, is added to equation (4.5) to solve the overfitting problem. Finally, the cost function is: 

 𝐽𝐽′ = � � (𝑥𝑥𝑖𝑖2 − 𝜇𝜇𝑖𝑖1)2
𝑘𝑘𝑖𝑖1

𝑖𝑖2=1

𝑗𝑗+1

𝑖𝑖1=1

+  𝛽𝛽𝛽𝛽  (4.6) 

- Weighted Least Square 

The SE algorithm is a data processing given by a set of measurement which is used for estimating the 
system state. The measurement function is as follows: 

 𝑧𝑧 = ℎ(𝑥𝑥) +  𝑒𝑒  (4.7) 

where, z  is the measurement vector, ( )h x  is the vector of function measurements of the state vector 
x , and e  is the measurement error vector. The measurement errors are assumed to be independent 

zero mean Gaussian variables, and vector R  is the covariance matrix of e . To solve the equation (4.7), 
the widely used WLS is implemented, and the objective is to minimize the sum of the square of the 
residuals. 

 𝐽𝐽(𝑥𝑥) = [𝑧𝑧 − ℎ(𝑥𝑥)]𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)]  (4.8) 

Solving the first-order optimality condition of equation (4.8) equal to zero will give the x  value, which 
satisfies the minimum value of objective function ( )J x . It is given by: 

 𝑔𝑔(𝑥𝑥) =
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

= −𝐻𝐻𝑇𝑇(𝑥𝑥)𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)] = 0  (4.9) 

where: 

 𝐻𝐻(𝑥𝑥) =
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝜕𝜕

 
 

(4.10) 

However, the function ( )g x  is nonlinear. Thus, the Gauss-Newton method is used to linearize the 
function, giving the result at the thk  iterative is as follows in equation (4.11). The iterative continues until 
the given convergence criterion is satisfied. 

 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝐺𝐺�𝑥𝑥𝑘𝑘�−1𝐻𝐻�𝑥𝑥𝑘𝑘�𝑇𝑇𝑅𝑅−1[𝑧𝑧 − ℎ(𝑥𝑥)] 
 

(4.11) 
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where ( )G x  is the gain matrix. 

 𝐺𝐺�𝑥𝑥𝑘𝑘� = 𝐻𝐻(𝑥𝑥𝑘𝑘)𝑇𝑇𝑅𝑅−1𝐻𝐻(𝑥𝑥𝑘𝑘) 
 

(4.12) 

The algorithm below summarizes the WLS algorithm used in this study. 

 Algorithm 1: Weighted Least Square Algorithm 
 1 Input:  network parameters, measurement sets; 
 2 Initialization: 1, 0, . 1, . 0mV V Iter Tolθ= = = =  
 3 While . 10Iter <  and . 1 4Tol e> − do 
 4  calculate measurement function ( )h x ; 
 5  calculate Jacobian matrix ( )H x ; 
 6  calculate gain matrix ( )kG x ; 
 

7 
 calculate ( ) ( ) ( )

1 1Tk k
V G x H x R z h x

− −  ∆ = −  ; 

 8  update VV V= + ∆ ; 
 9  update . . 1, . ( ( ))VIter Iter Tol max abs= + = ∆ ; 
  end 
  Result: mV , Vθ  

4.1.2. Simulation results 
This section presents the test case and simulation results in detail. First, the Chalmers University campus 
network is described. This is a typical university campus testbed that is investigated by Fossil Free Energy 
Districts (FED) project [87] and is widely used as a demonstration in different projects such as m2M-GRID 
[88] UNITED-GRID [85], and FlexiGrid. Second, the methodologies explained in subsection 4.1.1 are 
applied. Finally, the measurement variance of the LV-sensor is carried out by the CPD method. Thus, the 
DSSE is performed. 

 

Figure 4.3: The distribution network of Chalmers University campus. 
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The Chalmers University campus network in Sweden is used as the test case to perform the DSSE. The 
modified electrical distribution system was presented in [89]. The system is radial and has 40 nodes, 
including medium voltage (MV) and low voltage (LV), 22 branches and 17 MV-LV transformers (10.5/0.4 
𝑘𝑘𝑘𝑘). The single-line diagram of 10.5 kV Chalmers distribution system is shown in Figure 4.3 [90]. The 
network data is shown in Appendix A: The physical data of Chalmers University campus network”. 
Currently, the typical system demand varies between 3.5 and 5.5 𝑀𝑀𝑀𝑀 for hourly consumption. The 
photovoltaic (PV) system is a combination of roof-tops and wall-mounted PV with 800 kW installed 
capacity by spring 2019. Moreover, the maximum generation of PVs system (roof-tops and wall-mounted) 
has been estimated to be between 9 MW and 10 MW, within the scope of the FED project. 

- The variance of the LV-sensor 

LV-sensors were installed at the Strijp-S substation in the Netherlands for testing and research purposes. 
Data collected over one week of data with the one-second resolution are used for this study. The data 
contain both magnitude and phase information. However, only collected data of voltage magnitude and 
active power are used in this deliverable. The objective is to calculate the variance. Figure 4.4 shows one 
hour of 50 Hz RMS voltage magnitude measurements reported by the LV-Sensor averaged per second. 
The reporting rate is one second, so there are 3600 measurements in total. The calculated variances based 
on the CPD method are conducted with the threshold value equal to one volt. As can be seen, by the 
results, there are 17 significant change points over one hour. The red lines are the mean value of each 
sub-section, where the system is nearly stable. 

The calculated lengths for each sub-section are shown in Figure 4.5. There is several samples in each sub-
section. There are two sub-sections where the lengths are higher than 500 samples, which means that the 
voltage magnitude is stable for a longer period. Thus, the given variances belonging to those sub-sections 
are more accurate than the others. The variance of the data collected by the LV-sensors are shown in 
Figure 4.6 and are calculated by equation (4.3) for each sub-section. As aforementioned, the higher 
number of samples in Figure 4.5 will give more accurate variance in Figure 4.6. 

 

Figure 4.4: The 50 Hz RMS voltage magnitude averaged per second. 
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Figure 4.5: Calculated length of each sub-section over 1 hour. 

It is important to note that the selection of different threshold values will affect the length of each sub-
section. Therefore, it also affects the calculated variance. 

Table 4.1: Variance of voltage magnitude with different threshold values. 

Threshold Length of longest sub-section Variance (pu) 
0.5 708 samples 8.74E-10 
0.2 360 samples 5.72E-10 
0.1 211 samples 2.45E-10 
0.05 122 samples 1.84E-10 

 

Table 4.2: Variance of active power with different threshold values. 

Threshold Length of longest sub-section Variance (pu) 
1500 78 samples 4.57E-10 
1000 86 samples 4.57E-10 
500 87 samples 4.57E-10 
200 55 samples 1.54E-10 

 

Table 4.1 shows the length of the longest sub-section and the corresponding variance with four different 
threshold values. As can be seen, the number of samples is reduced when decreasing the threshold values, 
thus giving smaller variances. However, the calculated variance is less reliable if the number of samples is 
small. There is a trade-off between the threshold value and the reliability of variance. Similarly, the 
variance of active power measurements is shown in Table 4.2. As a reference, the variances used for PMU 
are normally selected as 1E-8 pu and 4E-4 pu for voltage magnitude and active power, respectively [91]. 
Thus, the results show the accuracy of the LV-sensor compared with the existing PMU measurement 
device. 
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Figure 4.6: Variance of LV-sensor collected data over 1 hour. 

- Distributed State Estimation 

The calculated variances are implemented with the real distributed system, the Chalmers campus 
network. First, the network power flow based on MATPOWER is processed to obtain the true values of 
voltage magnitude, power injection, and power flow of the network. Then a Gaussian noise is added to 
the true values. Thus, there are considered as measurement values. The selected variance values for 
voltage magnitude and power (as the same for injection and flow) are 1.48E-10 pu and 1.54E-4 pu, 
respectively. These values are used for building the covariance matrix. The network is assumed to be a 
balanced system. Thus, the network can be solved as a single-phase estimator using the WLS method 
mentioned above. There are 95 measurements consisting of one voltage magnitude at the slack bus, 23 
power injection measurement points, and 24 power flow measurement points (the power measurement 
is a pair of active and reactive measurements). 

 

Figure 4.7: Estimated values and true values of voltage magnitude. 
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Figure 4.8: Estimated values and true values of voltage angle. 

The simulation results of voltage magnitude and angle are shown in Figure 4.7 and Figure 4.8, respectively. 
The estimated values in red are compared to the true values (blue), which are based on the power flow 
equation. The results show the accuracy of estimation using the LV-sensors. 

In this section, we analysed the performance of DSSE using a new LV-sensor. The variance of real-time 
measurement was calculated by using the CDP method. These are 1.48E-10 pu and 1.54E-4 pu for voltage 
and power measurement, respectively. The WLS was applied to estimate the voltage magnitude and angle 
of the Chalmers University campus. It is found that the estimated values are similar to the true values. 
The simulation results have shown the accuracy of DSSE by using the new sensor device. Moreover, we 
expect that this LV-sensor can be further applied as a PMU in the distribution network. 

4.2. Data-driven state estimation 
With the increase of abundant real-time and historical data, data-driven state estimation is the promising 
base technique in the DSSE. In data-driven techniques, the information is started at the input layer, then 
the information moves through several hidden layers and ends at the output layer. By training the model 
with the necessary amount of data, the model can learn the correlation between each layer (input, hidden, 
and output layer). This way, the DSSE model can be trained without the need for physical equations of the 
system. 

4.2.1. Improvement physics-aware neural network 
In this section, the physics-aware neural network model will be implemented. The context of a physics-
aware neural network for DSSE is developed in [92]. The neural network model was built based on the 
physical connection of the power system network. However, there are still many unnecessary connections 
between hidden layers. The idea is to reduce the connections by zeroing out the weights of measurements 
that come from the outside of a partition. 



  GA #864048 
 

D 3.1 Dissemination Level: Public Page 40 of 61 

 

Figure 4.9: An example of 6-bus network. 

Figure 4.9 shows an example of a 6-bus system, with a PMU installed at bus 4. The authors in [92] show 
the (approximate) partition of DSSE based on the position of PMU in the network. The SE at a particular 
bus can be estimated by the measurements at the partition where this bus is located. For example, by 
installing a PMU at bus 4, the system can be divided into three partitions: 

Partition 1: bus 1, bus 2, bus 3, bus 4. 

Partition 2: bus 4, bus 5. 

Partition 3: bus 4, bus 6. 

By counting the diameter of each partition, partition 1 has a diameter of 3. Similarly, partitions 2, and 3 
have a set of the same diameter of 1. The partition value is the needed number of hidden layers for each 
partition. Thus, the grid needs three hidden layers for the physics-aware neural network. As mentioned 
before, partitions 2 and 3 need only one hidden layer for the neural network model. Figure 4.10 shows 
the weight matrix, hence, the connection between different layers. As we can see, graph 1 is the 
connection between the input layer and the first hidden layer. It is exactly the structure of the network 
admittance matrix. For graph 2, we kept the connections of the bus located in partition 1. However, in 
partitions 2, and 3, we zero out the connections between different buses in this partition, just kept the 
connection itself. To do so, we can build the physics-aware neural network model. 

 

Figure 4.10: The graph of each connection between layers. 

The graph of each connection between layers is shown in Figure 4.10. Then, it is implemented in a neural 
network model shown in Figure 4.11. As one can see, the traditional structure of the neural network 
model is modified based on the real connection and the PMU position in the distribution system. This 
proposed neural network model can reduce the training of the DSSE model. It can also be scaled up easily 
for a larger distribution system.  



  GA #864048 
 

D 3.1 Dissemination Level: Public Page 41 of 61 

 

Figure 4.11: The neural network model for a 6-bus network. 

4.2.2. Simulation results 
In this subsection, the proposed neural network model is implemented in the modified IEEE 123 bus 
system. The IEEE 123 bus is a radial unbalanced distribution network. The network has single and two-
phase loads; it also has different voltage levels. In this work, we consider the four switches as connection 
buses (i.e., the switches between 13-152, 18-135, 97-197, and 60-160, respectively). Furthermore, four 
voltage regulators have been excluded from the network. We evaluate the performance of the method 
with 2 PMUs installed at buses 1 and 60. As mentioned before, the network can be approximately 
partitioned into two partitions. 

Following the design process of the proposed method, 14 hidden layers are needed for the first partition 
and ten hidden layers for the second partition. So, the whole system needs 14 hidden layers to train the 
DSSE model. In this work, the one-year time series of smart meter data is used for the simulation. First, 
the load flow calculation is set up for the network. Then, the well-known WLS method for DSSE based on 
node voltage [93] is implemented as the benchmark method. The model evaluation process is shown in 
Figure 4.12, where the basic parameter of the network is the input for the MATLAB model. Then the 
OpenDSS is used to solve the load flow of this unbalanced distribution system. The output of an API 
between MATLAB and OpenDSS is the pair of the input measurement (Z) and the voltage magnitude of 
the network (Vtru). The set of measurements Z is then used as input measurement for the WLS to estimate 
the voltage magnitude (Vwls). Then, the absolute error between Vtru and Vwls is calculated. The result is 
shown in Figure 4.13, where only the voltage magnitude of phase A is shown (there are many single-phase 
loads which are located at phase B or C). The results show the accuracy of the WLS method in the modified 
IEEE 123 network. 

 

Figure 4.12: The model evaluation process. 
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By using the API between MATLAB and OpenDSS, we have the training pairs for the neural network model. 
The data set is created by the one-year data collected from the smart meter. Thus, the data are assumed 
to be a stochastic representation of the network. Then, the data are used to train the proposed neural 
network model. There are 35040 points of data; 90% of them are used for the training phase and 10% for 
the testing phase. The absolute error between the estimated voltage magnitude of the neural network 
model (Vnn) and Vtru is shown in Figure 4.14. As can be seen, the estimated voltage magnitude of phase A 
is almost similar to the true values; the maximum absolute error is around 1.5E-4. The results validate the 
robustness of the data-driven technique in the DSSE. 

In this section, the new data-driven SE is developed for the distribution system. The simulation results 
corroborate the accuracy of the proposed method. Also, the method is easy to be applied and scaled up 
because it does not require any complex mathematical equations of the distribution system. 

 

Figure 4.13: Estimated voltage magnitude at phase A of the WLS method. 

 

Figure 4.14: Estimated voltage magnitude at phase A of the NN method.  
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5. Risk assessment 
The transition to active distribution grids and the need for better energy utilisation has led to the 
increased penetration of distributed energy resources (DERs) in distribution networks. Despite the 
advantages of this approach, significant issues regarding the stable and secure operation of distribution 
networks have emerged. Hence, adequate risk assessment techniques that will evaluate the possibility of 
undesired future operation of the grid have been developed, mostly for congestion and voltage deviation 
issues. This section presents an overview of distribution level risk assessment techniques and introduces 
the congestion forecasting tool that has been developed by Chalmers, as well as its future developments 
that will be implemented in FlexiGrid. The satisfying operation of the developed congestion forecasting 
tool will be demonstrated in WP5 on the Chalmers campus. 

5.1. Congestion forecast in distribution networks 
Despite the large range of implementation of risk assessment techniques in distribution systems, most of 
the research efforts focus on identifying the possible congestion in a distribution network, usually through 
congestion forecasting techniques, in order to determine suitable congestion management methods [94]–
[96]. For this reason, international research has focused on identifying and forecasting the uncertainties 
that are associated with renewables and loads (especially user-dependent loads, e.g., EVs and HPs), 
emphasizing the uncertainties related to solar PV generation [97].  

The probabilistic approach has been very useful in modelling such uncertainties. Hence, for the modelling 
of the generation and load uncertainties in distribution networks, several probabilistic-based methods 
have been proposed [98]. In [99], a probabilistic load model that can be included in probabilistic power 
flow (PPF) has been developed, while in [100], a probabilistic algorithm for power reserve evaluation with 
high PV penetration has been introduced. Moreover, in [101], a chronological probabilistic model is 
designed, while a polynomial chaos expansion method for the inclusion of non-Gaussian random variables 
and polynomial nonlinearities is developed in [102]. In [103], a probabilistic framework for the evaluation 
of the maximum integration limits for distributed generations with consideration of voltage constraints 
has been proposed. A simplified version of the backwards-forward sweep (BFS) method, which employs 
a Gaussian mixture distribution, is proposed to solve PPF more efficiently to be used for planning LV 
networks in [104]. Moreover, in [105], a probabilistic method is proposed based on quasi-static time-
series analysis in combination with the golden section search algorithm to prevent reverse power flow in 
distribution systems due to PV integration. PV forecast is one of the most challenging uncertainties that a 
DSO faces. Hence, several approaches have focused on modelling the uncertainties associated with solar 
PV generation. In [106], a non-parametric kernel density estimation technique has been implemented in 
order to obtain the probability distribution of solar irradiance. Most of these research works have used a 
probabilistic framework for different applications, but still, a tool is missing which can help DSOs in 
understanding the current and future operating conditions of their systems while hosting a high 
percentage of PV and then help them in taking suitable action. 

A computationally efficient tool for DSOs is proposed in [107] to assess the impact of uncertainties 
associated with distributed units. Another probabilistic method has also been proposed in [71] to detect 
and rank the congested lines for the grid operators. However, a well-developed visualization platform for 
network operating conditions is required for DSOs. In addition, regarding the requirements for operating 
PV inverters, an analysis of the impact of the different operating modes of the inverters could be highly 
interesting from the DSOs perspective. 
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In this section, the development and operation of a congestion forecasting tool based on PPF, considering 
uncertainties associated with PV and other conventional loads, is presented. The developed tool also 
considers the different operating modes of PV inverters, reflecting the requirements for connecting PVs 
to distribution systems. The most significant function of the proposed congestion forecasting tool is the 
visualization of the network congestion based on the cumulative probability of the proposed congestion 
indicators, including node voltage deviation, branch and transformer overload, both for the distribution 
system and its individual components. These indicators can help DSOs in analysing congestion in their 
network and then take appropriate measures to manage the possible network congestion. In addition, in 
section 5.4 the most important functions of the designed congestion forecasting tool that have been and 
will be developed further in the context of FlexiGrid will be presented. 

5.2. Congestion forecasting tool for distribution systems  
This section presents the developed congestion forecasting tool along with the details of the probabilistic 
power flow model that has been used. The functional diagram for the congestion forecasting tool is shown 
in Figure 5.1. The uncertainties associated with PV and conventional load are considered in the proposed 
tool. The probabilistic approach is employed through Monte-Carlo simulations (MCS), each of which leads 
to a power flow solution. With the obtained power flow solutions, the congestion forecast is evaluated 
through indices such as nodes voltage deviation, branches and transformers overloading. 

 

Figure 5.1: Functional diagram for the congestion forecasting tool. 

5.2.1. Probabilistic Power Flow Method 
The proposed tool uses MCS for PPF where a large number of scenarios are simulated based on the PDF 
of different variables (i.e., the different uncertainties). This work employs the BFS method for the power 
flow simulations. The details of the BFS method are presented as follows: 

Backwards-Forward Sweep Method 
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The BFS method is suitable for highly radial distribution networks whose solution is obtained by iterative 
solution from two sets of recursive equations. The detailed procedures of BFS method without and with 
the consideration of P-V nodes in the system are as follows [108]: 

1. Without P-V nodes: Here, all the nodes except the slack node are modelled as P-Q nodes. To start, 
the voltage at the slack node is kept constant and a flat voltage start is assumed at all other nodes 
and then for the 𝑖𝑖𝑡𝑡ℎ iteration, the following iterative steps are performed: 
a) Calculate the current injection at node 𝑘𝑘, as: 

 𝐶𝐶𝑘𝑘
(𝑖𝑖) = �

𝑆𝑆𝑘𝑘
𝑉𝑉𝑘𝑘

(𝑖𝑖−1)�
∗

− 𝑌𝑌𝑘𝑘𝑉𝑉𝑘𝑘
(𝑖𝑖−1)  ∀ 𝑘𝑘 = 1,2, … ,𝑛𝑛  (5.1) 

where, 𝑉𝑉𝑘𝑘
(𝑖𝑖−1) is the voltage at node 𝑘𝑘 in (𝑖𝑖 − 1)th iteration, while 𝑆𝑆𝑘𝑘 and 𝑌𝑌𝑘𝑘 are the apparent 

power injection and sum of shunt elements admittances at node 𝑘𝑘. 

b) Calculate branch currents starting from the branch connected to the last node and then 
moving backward towards the branches connected to the slack node. Thus, the current in 
branch 𝑗𝑗, is calculated as: 

 𝐼𝐼𝑗𝑗
(𝑖𝑖) = 𝐶𝐶𝑁𝑁

(𝑖𝑖) + �𝐼𝐼𝑓𝑓
(𝑖𝑖)

𝑇𝑇

𝑓𝑓=1

   ∀ 𝑗𝑗 = 𝑏𝑏𝑏𝑏, … ,2,1  (5.2) 

where, 𝐶𝐶𝑁𝑁
(𝑖𝑖) is the load current at node 𝑁𝑁 and 𝑇𝑇 is the total number of branches coming out 

from node 𝑁𝑁. 

c) Update the node voltages starting from the slack node and moving forward towards the last 
node. The voltage at node 𝑁𝑁 is calculated using the updated voltage at node 𝑀𝑀 and the 
updated current in branch 𝑗𝑗 is calculated during backward sweep, as follows: 

 𝑉𝑉𝑁𝑁
(𝑖𝑖) = 𝑉𝑉𝑀𝑀

(𝑖𝑖) − 𝑍𝑍𝑗𝑗𝐼𝐼𝑗𝑗
(𝑖𝑖)   ∀ 𝑗𝑗 = 1,2, … , 𝑏𝑏𝑏𝑏  (5.3) 

        where, 𝑍𝑍𝑗𝑗  represents the impedance of a branch 𝑗𝑗. 

These steps are performed iteratively until the convergence criteria is satisfied. 

2. With P-V nodes: Here, all the generator nodes are modelled as 𝑃𝑃-𝑉𝑉 nodes while the load nodes 
are modelled as 𝑃𝑃-𝑄𝑄 nodes. A compensation method is used for the elimination of voltage 
mismatches from their specified values at 𝑃𝑃-𝑉𝑉 nodes. The basic idea is to compensate the node 
with a calculated amount of reactive power, so that the voltage mismatch becomes zero. 

Let us suppose that there are 𝑞𝑞 𝑃𝑃-𝑉𝑉 nodes in the network, then for αth iteration, the procedure 
for the correction of voltage magnitude is as follows: 

a) Calculate the voltage magnitude mismatch for all 𝑃𝑃-𝑉𝑉 nodes: 

 Δ𝑉𝑉𝑘𝑘
(α) = �𝑉𝑉𝑘𝑘

(𝑠𝑠𝑠𝑠)� − �𝑉𝑉𝑘𝑘
(𝛼𝛼)�∀ 𝑘𝑘 = 1,2, … , 𝑞𝑞  (5.4) 

where, 𝑉𝑉𝑘𝑘
(𝑠𝑠𝑠𝑠) is the specified voltage value at node 𝑘𝑘. 
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b) Calculate the reactive current injection as follows: 

 �𝐼𝐼𝑄𝑄�
(α)

= [𝑍𝑍]−1[Δ𝑉𝑉](α) 
 (5.5) 

where, 𝑍𝑍 is the real and constant impedance matrix with size as the number of 𝑃𝑃-𝑉𝑉 nodes. 
The diagonal entries of 𝑍𝑍 are the sum of the absolute value of all branch impedances between 
the considered node and the slack node. For off-diagonal entries, they are the sum of the 
absolute value of all branch impedances which have the common path between the slack 
node and the considered nodes. 

Thus, the injected reactive current at 𝑘𝑘th node can be calculated as: 

 𝐼𝐼𝑘𝑘𝑘𝑘
(α) = 𝑗𝑗�𝐼𝐼𝑘𝑘𝑘𝑘

(α)�  (5.6) 

c) Calculate the total reactive power requirement 𝑄𝑄𝑘𝑘𝑘𝑘, for all 𝑃𝑃-𝑉𝑉 nodes, as follows: 

 𝑄𝑄𝑘𝑘𝑘𝑘
(α) = 𝑄𝑄𝑘𝑘

(α) + 𝑄𝑄𝑘𝑘𝑘𝑘  (5.7) 

 𝑄𝑄𝑘𝑘
(α) = Im�𝑉𝑉𝑘𝑘𝐼𝐼𝑘𝑘𝑘𝑘′

∗�
(α)

 ∀ 𝑘𝑘 = 1,2, … ,𝑛𝑛 
 (5.8) 

where, 𝑄𝑄𝑘𝑘𝑘𝑘 is the reactive power load at node 𝑘𝑘 and 𝐼𝐼𝑘𝑘𝑘𝑘′  is the sum of the required reactive 

current injection and the load current injection is equal to the sum �𝐼𝐼𝑘𝑘𝑘𝑘
(α) + 𝐼𝐼𝑘𝑘𝑘𝑘�. 

d) Check for all nodes whether the calculated 𝑄𝑄𝑘𝑘𝑘𝑘 �= 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖� corresponding to 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖, satisfies the 
constraint given by (5.9). 

 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2   (5.9) 

If not, then a new value of 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 and the corresponding value of 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 should be calculated. To 
do this more effectively, a curve-fitting method is used to express 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 as a function of 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 
(for a fixed system topology). Curve-fitting is a method for expressing a mathematical function 
which best fits to a series of data points. Here, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 are the data points. This method 
helps in avoiding the iterative process to find the new value of 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖.  

These steps are performed iteratively until the voltage mismatches for all 𝑃𝑃-𝑉𝑉 nodes satisfy the 
convergence criteria. 

5.2.2. Congestion Forecast 
MCS are simulated to obtain the power flow solution using the above procedure. For simplicity, Gaussian 
PDF is used for generating samples of generation and load forecast to be used in MCS, as follows: 

 𝑃𝑃𝑃𝑃𝑃𝑃 =
1

√2πσ2
𝑒𝑒−

(𝑥𝑥 − μ)2

2σ2
 

 
(5.10) 

where, µ and 𝜎𝜎 represent the mean and standard deviation, respectively. 

Finally, with the results obtained from power flow solutions, the following indices are proposed to 
evaluate the congestion forecast: 
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1. Nodes Voltage Deviation: It is the deviation of the node voltage from the specified values. Critical 
nodes are the ones where the deviation is more than a pre-specified value in at least an identified 
number of MCS simulations. For instance, if the deviation is more than 3% in at least 20% of MCS 
simulations, it is considered as a critical node. 

2. Branch Overloading: It is the measure of amount of the current flowing in the branches above 
their rated thermal capacity (𝐼𝐼𝑐𝑐). Critical branches are the ones where the current flow is more 
than a pre-specified percentage in at least an identified number of MCS simulations. 

3. Transformer Overloading: It is the measure of amount of the MVA power flow in the transformers 
above their rated MVA capacity (𝑇𝑇𝑐𝑐). Critical transformers are the ones where the MVA power 
flow is more than a pre-specified percentage in at least an identified number of MCS simulations. 

The congestion forecast algorithm is given as follows: 

 Algorithm: Congestion Forecast Algorithm 

 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃:  𝑉𝑉𝑘𝑘
𝑠𝑠𝑠𝑠, 𝑍𝑍, 𝑌𝑌, 𝑃𝑃𝐿𝐿

𝑓𝑓, 𝑃𝑃𝐺𝐺
𝑓𝑓, 𝐼𝐼𝑐𝑐, 𝑇𝑇𝑐𝑐, 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, ϵ 

 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑: 𝑉𝑉� , 𝐼𝐼  ̅
1 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: Flat start for all 𝑉𝑉�  
2 for 𝑠𝑠 = 1: 𝑆𝑆 do 
3          𝑖𝑖 = 1; 
4       do 
5                Backward Sweep using (2) and (3) 
6                Forward Sweep using (4) 
                For 𝑃𝑃 − 𝑉𝑉 Nodes: 

7                Calculate Δ𝑉𝑉𝑘𝑘 and 𝑄𝑄𝑘𝑘𝑘𝑘 using (5.4), (5.6), (5.8) 
                Incorporating Inverter Limits: 

8                for 𝑖𝑖 = 1: 𝑘𝑘1 do 
9                      if �𝑃𝑃𝐺𝐺

𝑓𝑓�
2
 + (𝑄𝑄𝑘𝑘𝑘𝑘)2 > (Srated)2 then 

10                            Re-calculate 𝑃𝑃𝐺𝐺
𝑓𝑓 such that the constraint as  

                           mentioned in (1) is satisfied 
11                Iteration count: 𝑖𝑖 =  𝑖𝑖 +  1 
12        while �𝑉𝑉� 𝑖𝑖  −  𝑉𝑉� 𝑖𝑖+1�𝑘𝑘 ≤ ϵ; 

 Evaluate Congestion: 
13 Determine nodes voltage deviation (Δ𝑉𝑉 > |𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑉𝑉𝑠𝑠𝑠𝑠|), branch  

overloading (𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ>𝐼𝐼𝑐𝑐) and transformer overloading (𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡>𝑇𝑇𝑐𝑐) 
                                                       

where, 𝑃𝑃𝐿𝐿
𝑓𝑓 and 𝑃𝑃𝐺𝐺

𝑓𝑓 are forecast value of load and PV, 𝑆𝑆 is number of MCS and ϵ is tolerance limit. 

5.3. Indicative results of the congestion forecasting tool on Chalmers campus 
In this subsection some indicative results of the congestion forecasting tool implementation on Chalmers 
campus will be presented. Initially, the studied test cases will be explained and then the efficient 
application of the congestion forecasting tool will be validated through simulation results. 
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5.3.1.  Chalmers campus test case 
The proposed congestion forecasting tool is applied using the data of the modified electrical distribution 
system of the Chalmers campus in Sweden. The single-line diagram of 10.5 kV Chalmers distribution 
system is shown in Figure 5.2 [90], as explained in subsection 4.1.2. 

 
Figure 5.2: Single-line diagram of Chalmers 10.5 kV electrical distribution grid. 

The congestion forecast analysis presents the congestion indicators for one snapshot while the number 
of MCS is taken as 10 000, and the convergence criterion 𝜖𝜖 is taken as 0.0001. For PV and load forecast 
scenarios, µ is taken as the forecast value of PV and load at one time instant, while σ is taken as 0.1. 
Additionally, the plug-in electric vehicles (PEV) which are present in Chalmers distribution system are 
considered here to present more realistic results. The charging power demand model for PEVs has been 
incorporated for the Chalmers network. The Chalmers distribution system presently has around 35 PEVs 
charging points at 32A/22kW and 16A/3.7kW level, located at two charging stations (nodes 7 and 19). The 
other two charging stations (nodes 12 and 23) are considered for future scenarios. 

The location of the PV injection nodes and PEV charging stations are shown in Figure 5.2, while real 
recorded Chalmers load data are considered. The rated capacity of PV-inverter (𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is taken as 120% 
of the maximum PV capacity, to be considered as defined in (5.9). The hourly load demand for Chalmers 
10.5 kV electrical distribution grid for a typical day is shown in Figure 5.3. 

In this work, the following two future scenarios are considered as presented in Table 5.2, where PV 
generation and load demand are the actual generation and demand for the network at that time instant. 
The load demand in scenario A is taken as 4.5 MW to consider the average hourly demand on a present 
typical day as shown in Figure 5.3, while it is taken as 8.8 MW in scenario B which considers the future 
average hourly load demand. 
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Figure 5.3: Hourly load demand for Chalmers 10.5 kV electrical distribution grid on a typical day. 

Table 5.1. Future scenarios for Chalmers campus case study. 

Scenarios A B 

PV Generation (MW) 4 8 
Number of PEV 150 300 

Load Demand (MW) 4.5 8.8 

The criteria used for the evaluation of the congestion indices are presented in Table 5.2. For instance, the 
criteria in the case of local production level are that all the nodes where the voltage is more than 1.03 p.u. 
(or the deviation is more than 3%) in at least 20% of MCS simulations are identified as critical nodes or 
the branches where the current is more than 100% of the rated capacity in at least 20% of MCS simulations 
are identified as critical branches. The selection of criteria for the evaluation of the congestion indices 
could be adjusted according to the DSO monitoring requirements and the proposed tool can easily adapt 
to these requirements. 

Table 5.2. Criteria for evaluation of congestion indices for Chalmers case-study 

Case Local Production Level 
(For scenario A and B) 

Operating Mode 
(constant-pf and -V) 

Critical Nodes 1.03 pu, 20% - 

Critical Branches 100%, 20% 100%, 20% 

Critical Transformers 100%, 20% 100%, 20% 

 

5.3.2. Results on the impact of the local production level on Chalmers campus test case 
To assess the impact of local production level, two different scenarios A and B, as mentioned in Table 5.1 
and Table 5.2, are considered with constant-pf mode of operation. The same congestion indices 
evaluation criteria are used for visualizing the impact of local production level in the two scenarios. It can 
be seen in Figure 5.4 that the CP for having a voltage magnitude greater than 1.03 p.u. at all nodes has 
increased and similar results can be observed for the critical nodes. From Figure 5.5, the CP for branch 
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currents to be more than 100% has increased approximately from 0.10 to 0.40. In addition, from Figure 
5.6, the CP for transformer MVA loading to be more than 100% has increased approximately from 0.10 to 
0.30. 

 

Figure 5.4: CP for nodes voltage deviation with constant-pf for scenario A and B. 

 

Figure 5.5: CP for branches overloading with constant-pf for scenario A and B. 

 

Figure 5.6: CP for transformers overloading with constant pf for scenario A and B. 
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Therefore, it is evident from the results that with increment of 100% in local generations, 100% in number 
of PEVs, and 95% in load demand (scenario A to B), the CP for congestion indices nodes voltage deviation 
has increased from 2% to 10%, branch overloading from 10% to 40% and transformer overloading from 
10% to 30%. These increments are mainly because of higher current, active and reactive power flows, due 
to higher local production and demand. The nodes are subjected to more fluctuations which leads to 
higher CP for nodes voltage deviation. In addition, the CP for branch and transformer loadings have 
increased due to higher active and reactive power flow across them. 

5.3.3. Results on the impact of the operating modes on Chalmers campus test case  

To assess the impact of operating modes, scenario B, as mentioned in Table 5.1, is simulated under 
constant-pf and constant-V modes of operation. The evaluation criteria used for congestion indices are 
presented in Table 5.2. 

 

Figure 5.7: CP for nodes voltage deviation with constant-pf and -V modes for scenario B. 

 

Figure 5.8: CP for branches overloading with constant-pf and -V modes for scenario B. 
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Figure 5.9: CP for transformers overloading with constant-pf and -V modes for scenario B. 

It can be seen from Figure 5.7, that the CP for having a voltage magnitude greater than 1.03 p.u. at all 
nodes is almost 0 which is mainly due to the consideration of P-V nodes, where the node voltage remains 
fixed at specified values with reactive power compensation. Due to the small CP for voltage deviation, 
there are no critical nodes identified in constant-V mode. However, it can be seen from Figure 5.8, that 
the CP for branch currents to be more than 100% has slightly increased from 0.38 to 0.40. Moreover, from 
Figure 5.9, the CP for transformer MVA loading to be more than 100% has increased approximately from 
0.28 to 0.36. 

Therefore, it is evident from the results that in constant-V mode, the CP for nodes voltage deviation 
congestion index has decreased, branch overloading has increased approximately from 38% to 42% and 
transformer overloading from 28% to 36%. The reason for the decreased voltage deviation is due to the 
consideration of P-V nodes. In constant-V mode, the voltage is maintained at a specified value through 
reactive power compensation by injection of higher reactive current, which leads to higher current and 
MVA loading in associated branches and transformers. 

5.4. Further developments of the congestion forecasting tool in FlexiGrid 
The developed congestion forecasting tool will be further improved within the duration of the project. 
The envisioned future developments of the tool can be listed as follows: 

• Congestion forecast over different forecasting horizons. 
• Presentation of the congestion forecast results in a more interactive, visualised manner. 
• Evaluation of the severity of congestion in the system components. 
• Inclusion of load models in the load forecast to increase the congestion forecast accuracy. 
• Provision of inputs to the market-based congestion management techniques for the evaluation 

of the amount of flexibility needed to relieve congestion. 
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6. Conclusions & Discussion about the limitation of the deliverable and 
further prospects 

The work developed in the FlexiGrid project considers the flexibility option for medium and small DSOs. It 
allows a cross-sectoral integration to unlock flexibility resources, especially those existing in the coupling 
between different energy vectors as well as demand response using charging schemes of EVs or storage. 
This report focuses on the network observability problem and risk assessment in the distribution system. 
First, the DSOs need, and the requirement for flexibility context has been discussed to provide a good 
overview of the current situation of the distribution system. Then, the different techniques and 
functionalities of grid monitoring have been listed and discussed in detail. 

Considering the main function of grid monitoring, the physics-based method has been developed for a 
real distribution system on the Chalmers University campus network. The simulation result shows a good 
estimation of the voltage magnitude and voltage angles. Thus, the method can be further tested on the 
Chalmers campus demonstration site. Due to the increasing amount of available data in the distribution 
system, a data-driven state estimation has also been developed—the method is based on the physical 
connection of the system to design the connection between layers. The method has been tested in the 
IEEE 123 bus system showing promising results. 

Then, a congestion forecasting tool based on PPF, considering the uncertainties associated with PV and 
other conventional loads, has been presented. The most significant function of the proposed congestion 
forecasting tool is the visualization of the network congestion based on the cumulative probability of the 
proposed congestion indicators, including node voltage deviation as well as branch and transformer 
overload. These indicators can help DSOs in analysing congestion in their network and then take the 
appropriate measures to manage possible network congestion. 

Besides the scientific contributions, the work carried out in this task will be further used as the input for 
other tasks and WPs. Task 3.2 aims to develop a model predictive control algorithm to reconfigure the 
network, where the estimated or predicted state from the SE or forecasting model is needed as the input 
for a model predictive control. The system condition that comes from the risk assessment model is one of 
the input signals for the control algorithm. For the flexibility service, how to quantify the available 
resources in the network is a remaining question, which will be addressed in Task 3.4. The developed 
model in this task could play an important role. 

In the future, the field test conducted in WP5 (task 5.3) will evaluate the grid monitoring results in real-
life conditions. In this task, the grid monitoring functionalities will be demonstrated. With the support 
from the IoT platform and the SCADA/DMS system, the real-time (or close to real-time) SE will be 
implemented for the real distribution network of the Chalmers University campus. Based on that, the 
network control, and the requested flexibility services (e.g., voltage control, power congestion, etc.) 
functions will be tested on-site.  
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7. Appendix A: The physical data of Chalmers University campus 
network 

No. From bus To bus R (pu) X (pu) B (pu) 
1 1 2 1.45E-05 1.00E-06 1.70E-04 
2 2 3 2.81E-05 1.90E-05 3.50E-04 
3 3 4 2.55E-04 1.73E-04 3.10E-03 
4 4 5 3.40E-04 2.30E-04 4.20E-03 
5 5 6 1.87E-04 1.27E-04 2.30E-03 
6 1 8 4.76E-04 3.23E-04 5.80E-03 
7 2 10 1.72E-05 1.18E-05 2.10E-04 
8 10 11 2.81E-05 1.90E-05 3.50E-04 
9 2 13 2.27E-05 1.54E-05 2.80E-04 

10 13 14 1.25E-04 8.44E-05 1.50E-03 
11 13 16 3.75E-04 2.54E-04 4.60E-03 
12 13 18 9.07E-05 6.17E-05 1.10E-03 
13 2 20 3.12E-04 2.11E-04 3.80E-03 
14 20 21 1.31E-04 5.80E-05 8.50E-04 
15 21 22 1.87E-04 8.25E-05 1.20E-03 
16 20 25 7.98E-05 5.35E-05 9.70E-04 
17 25 26 8.53E-05 5.80E-05 1.00E-03 
18 20 29 6.35E-05 3.08E-05 4.80E-04 
19 3 31 4.54E-04 3.08E-04 5.50E-03 
20 31 32 1.18E-05 8.20E-06 1.40E-04 
21 32 33 3.63E-05 1.09E-05 1.20E-04 
22 31 35 4.65E-04 3.16E-04 5.70E-03 
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